Swansea University researchers have discovered what liquid gold looks like on the nanoscale – and in doing so have mapped the way in which nanoparticles melt, which is relevant to the manufacturing and performance of nanotechnology devices such as bio-sensors, nanochips , gas sensors, and catalysts.
The research published in Nature Communications (“Atomic-resolution imaging of surface and core melting in individual size-selected Au nanoclusters on carbon”) set out to answer a simple question – how do nanoparticles melt? Although this question has been a focus of researchers for the past century, it still is an open problem – initial theoretical models describing melting date from around 100 years, and even the most relevant models being some 50 years old.

Professor Richard Palmer, who led the team based at the University’s College of Engineering said of the research: “Although melting behavior was known to change on the nanoscale, the way in which nanoparticles melt was an open question. Given that the theoretical models are now rather old, there was a clear case for us to carry out our new imaging experiments to see if we could test and improve these theoretical models.”

Image Credit:  Swansea University

News This Week

Does Space-Time Really Exist?

Is time something that flows — or just an illusion? Exploring space-time as either a fixed “block universe” or a dynamic fabric reveals deeper mysteries about existence, change, and the very nature of reality. [...]

Sugar-Coated Nanoparticles Boost Cancer Drug Efficacy

A team of researchers at the University of Mississippi has discovered that coating cancer treatment carrying nanoparticles in a sugar-like material increases their treatment efficacy. They reported their findings in Advanced Healthcare Materials. Over a tenth of breast [...]

Nanomotors: Where Are They Now?

First introduced in 2004, nanomotors have steadily advanced from a scientific curiosity to a practical technology with wide-ranging applications. This article explores the key developments, recent innovations, and major uses of nanomotors today. A [...]