Researchers succeeded for the first time in accelerating electrons using a nano device.
Particle accelerators are crucial tools in a wide variety of areas in industry, research, and the medical sector. The space these machines require ranges from a few square meters to large research centers. Using lasers to accelerate electrons within a photonic nanostructure constitutes a microscopic alternative with the potential of generating significantly lower costs and making devices considerably less bulky.
Until now, no substantial energy gains have been demonstrated. In other words, it has not been shown that electrons really have increased in speed significantly. A team of laser physicists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) has now succeeded in demonstrating the first nanophotonic electron accelerator – at the same time as colleagues from Stanford University.
For the first time, FAU researchers have succeeded in measurably accelerating electrons in structures that are only a few nanometers in size. In the picture, you can see the microchip with the structures and, in comparison, a 1 cent coin. Credit: FAU/Julian Litzel
Particle Accelerators and Their Nanophotonic Evolution
When people hear “particle accelerator,” most will probably think of CERN’s Large Hadron Collider in Geneva, the approximately 27-kilometer-long ring-shaped tunnel that researchers from around the globe used to conduct research into unknown elementary particles. Such huge particle accelerators are the exception, however. We are more likely to encounter them in other places in our day-to-day lives, for example in medical imaging procedures or during radiation to treat tumors. Even then, however, the devices are several meters in size and still rather bulky, with room for improvement in terms of performance.
Particles are accelerated by ultrashort laser pulses illuminating the nanostructures. “The dream application would be to place a particle accelerator on an endoscope in order to be able to administer radiotherapy directly at the affected area within the body,” explains Dr. Tomáš Chlouba, one of the four lead authors of the recently published paper.
This dream may still be far beyond the grasp of the FAU team from the Chair of Laser Physics led by Prof. Dr. Peter Hommelhoff and consisting of Dr. Tomáš Chlouba, Dr. Roy Shiloh, Stefanie Kraus, Leon Brückner and Julian Litzel, but they have now succeeded in taking a decisive step in the right direction by demonstrating the nanophotonic electron accelerator. “For the first time, we really can speak about a particle accelerator on a chip,” enthuses Dr. Roy Shiloh.
Guiding Electrons + Acceleration = Particle Accelerator
Just over two years ago the team made their first major breakthrough: they succeeded in using the alternating phase focusing (APF) method from the early days of acceleration theory to control the flow of electrons in a vacuum channel over long distances. This was the first major step on the way towards building a particle accelerator. Now, all that was needed to gain major amounts of energy was acceleration.
“Using this technique, we have now succeeded not only in guiding electrons but also in accelerating them in these nano-fabricated structures over a length of half a millimeter,” explains Stefanie Kraus. Whilst this might not sound like much of an achievement to many, it is a huge success for the field of accelerator physics. “We gained energy of 12 kiloelectron volts. That is a 43 percent gain in energy,” explains Leon Brückner.
In order to accelerate the particles over such large distances (when seen from the nanoscale), the FAU physicists combined the APF method with specially developed pillar-shaped geometrical structures.
This demonstration is just the beginning, however. Now the aim is to increase the gain in energy and electron current to such an extent that the particle accelerator on a chip is sufficient for applications in medicine. For this to be the case, the gain in energy would have to be increased by a factor of approximately 100. “In order to achieve higher electron currents at higher energies at the output of the structure, we will have to expand the structures or place several channels next to each other,” Tomáš Chlouba explains the next steps of the FAU laser physicists.
A Global Pursuit for Miniaturization
What the Erlangen laser physicists succeeded in doing was demonstrated almost simultaneously by colleagues at Stanford University in the United States: Their results are currently under review, but can be viewed on a repository. The two teams are working together on the realization of the “Accelerator on a chip” in a project funded by the Gordon and Betty Moore Foundation.
“In 2015, the FAU- and Stanford-led ACHIP team had a vision for a revolutionary approach to particle accelerator design,” said Dr. Gary Greenburg of the Gordon and Betty Moore Foundation, “and we are delighted that our support has helped turn this vision into reality.”
Reference: “Coherent nanophotonic electron accelerator” by Tomáš Chlouba, Roy Shiloh, Stefanie Kraus, Leon Brückner, Julian Litzel and Peter Hommelhoff, 18 October 2023, Nature.
DOI: 10.1038/s41586-023-06602-7
News
New MRI Study Uncovers Hidden Lung Abnormalities in Children With Long COVID
Long COVID is more than just lingering symptoms—it may have a hidden biological basis that standard medical tests fail to detect. A groundbreaking study using advanced MRI technology has uncovered significant lung abnormalities in [...]
AI Struggles with Abstract Thought: Study Reveals GPT-4’s Limits
While GPT-4 performs well in structured reasoning tasks, a new study shows that its ability to adapt to variations is weak—suggesting AI still lacks true abstract understanding and flexibility in decision-making. Artificial Intelligence (AI), [...]
Turning Off Nerve Signals: Scientists Develop Promising New Pancreatic Cancer Treatment
Pancreatic cancer reprograms nerve cells to fuel its growth, but blocking these connections can shrink tumors and boost treatment effectiveness. Pancreatic cancer is closely linked to the nervous system, according to researchers from the [...]
New human antibody shows promise for Ebola virus treatment
New research led by scientists at La Jolla Institute for Immunology (LJI) reveals the workings of a human antibody called mAb 3A6, which may prove to be an important component for Ebola virus therapeutics. [...]
Early Alzheimer’s Detection Test – Years Before Symptoms Appear
A new biomarker test can detect early-stage tau protein clumping up to a decade before it appears on brain scans, improving early Alzheimer’s diagnosis. Unlike amyloid-beta, tau neurofibrillary tangles are directly linked to cognitive decline. Years [...]
New mpox variant can spread rapidly across borders
International researchers, including from DTU National Food Institute, warn that the ongoing mpox outbreak in the Democratic Republic of the Congo (DRC) has the potential to spread across borders more rapidly. The mpox virus [...]
How far would you trust AI to make important decisions?
From tailored Netflix recommendations to personalized Facebook feeds, artificial intelligence (AI) adeptly serves content that matches our preferences and past behaviors. But while a restaurant tip or two is handy, how comfortable would you [...]
Can AI Really Think? Research Reveals Gaps in Logical Execution
While AI models can break down problems into structured steps, new research reveals they still fail at basic arithmetic and fact-checking—raising questions about their true reasoning abilities. Large Language Models (LLMs) have become indispensable [...]
Scientists Just Made Cancer Radiation Therapy Smarter, Safer, and More Precise
Scientists at UC San Francisco have developed a revolutionary cancer treatment that precisely targets tumors with radiation while sparing healthy tissues. By using a KRAS-targeting drug to mark cancer cells and attaching a radioactive [...]
Superbugs Are Losing to Science, Light, and a Little Spice
Texas A&M researchers have found that curcumin, when activated by light, can weaken antibiotic-resistant bacteria, restoring the effectiveness of conventional antibiotics. Curcumin: A Surprising Ally Against Superbugs In 2017, a woman admitted to a [...]
New Research Shatters the Perfect Pitch Myth
For decades, people believed absolute pitch was an exclusive ability granted only to those with the right genetics or early music training. But new research from the University of Surrey proves otherwise. It’s been [...]
Why Some Drinkers Suffer Devastating Liver Damage While Others Don’t
A study from Keck Medicine of USC found that heavy drinkers with diabetes, high blood pressure, or a large waistline are up to 2.4 times more likely to develop advanced liver disease. These conditions may amplify [...]
“Good” Cholesterol Could Be Bad for Your Eyes – New Study Raises Concerns
‘Good’ cholesterol may be linked to an increased risk of glaucoma in individuals over 55, while, paradoxically, ‘bad’ cholesterol may be associated with a lower risk. These findings challenge conventional beliefs about factors that [...]
Reawakening Dormant Nerve Cells: Groundbreaking Neurotechnology Restores Motor Function
A new electrical stimulation therapy for spinal muscle atrophy (SMA) has shown promise in reactivating motor neurons and improving movement. In a pilot clinical trial, three patients who received spinal cord stimulation for one [...]
AI’s Energy Crisis Solved? A Revolutionary Magnetic Chip Could Change Everything
AI is evolving at an incredible pace, but its growing energy demands pose a major challenge. Enter spintronic devices—new technology that mimics the brain’s efficiency by integrating memory and processing. Scientists in Japan have [...]
Nanotechnology for oil spill response and cleanup in coastal regions
(Nanowerk News) Cleaning up after a major oil spill is a long, expensive process, and the damage to a coastal region’s ecosystem can be significant. This is especially true for the world’s Arctic region, [...]