Just a few decades ago, the possibility of connecting the brain with a computer to convert neural signals into concrete actions would have seemed like something from science fiction.
But in recent years, some scientific advances have been made in this regard, through so-called BCIs (Bran-Computer Interfaces) that establish communication bridges between the human brain and computers.
A recent study by UPF continues to advance in this direction and makes new contributions to pursue this desired neuroscientific milestone.
The results of the study by the UPF Center for Brain and Cognition (CBC) are the subject of an article published on February 7 in the journal eNeuro, titled “Long-range alpha-synchronisation as control signal for BCI: A feasibility study,” jointly written by Martín Esparza-Iaizzo (UPF and University College of London), Salvador Soto-Faraco (UPF and ICREA), Irene Vigué-Guix (UPF), Mireia Torralba Cuello (UPF), and Manuela Ruzzoli (Basque Center on Cognition Brain and Language).
One of the main current challenges in neuroscience is the identification of brain signals which are robust enough to control devices in real time. Neuroscientists have already achieved devices that can be controlled with the mind using only the activity of one or several regions of the brain.
However, it is not yet possible to do so via the communication and synchronization of different regions of the brain. The article published by eNeuro makes significant contributions to advance in achieving this goal.
Brain activity during visuospatial attention tasks
This study is based on the analysis of the brain activity of 10 people during a visuospatial attention task, performing up to 200 measurements per subject, and relies on the concept of crossed laterality: what we see on the right hand side of the visual field is represented in the left hemisphere of the brain and, conversely, what we see on the left is represented in the right hemisphere.
Levels of the brain signal known as the alpha band decrease in the hemisphere in which the images we observe are represented. The researchers compare variations in alpha band levels to the plates on a weighing scale. It is precisely on the side of the scale in which more weight is loaded where their plates descend to a greater extent, while, on the side with less weight, they tend upwards.
The same goes for the levels of the alpha band: it is precisely in the hemisphere on the side where the images are represented that the levels of the alpha band decrease most, while they rise in the opposite hemisphere. It should be borne in mind that the alpha band inhibits the excitability of neurons, so it causes a state of relaxation of neuronal populations. It is therefore not surprising that their level is lower in the hemisphere of the brain that processes images.
It should also be noted that the brain is divided into different regions that communicate by synchronizing its neural fluctuations, for example in the alpha range. Precisely, one of the objectives of the research was to analyze whether the long-range synchronization of the alpha band between brain regions presents lateralized patterns and this has been confirmed by the study authors.
Specifically, if we attend to the right, the communication between the frontal and parietal regions of the left hemisphere increases and, if we attend to the left, the communication between these same regions in the right hemisphere increases.
To date, signals from the alpha band with which the brain’s frontal and parietal regions communicate can only be fully captured through the aggregation of data from different measurements and not through a single trial. Therefore, another of the objectives of the study was precisely to examine how to capture these neural patterns at a single test level, which would allow generating a control signal to activate devices through brain-computer interfaces in real time.
To achieve this, the principal investigator, Martín Esparza-Iaizzo explains that his study makes contributions from the methodological point of view: “The novelty of the study is that, unlike previous studies, it uses measures of synchrony between parietal and frontal areas at the level of each individual trial, not in aggregated data,”
However, he warns that the limitations of current electroencephalographs to achieve this goal have been noted:
“Current encephalography has limitations in terms of spatial resolution, and in terms of noise, due to breathing, heart activity, etc.”
However, the findings of this research provide a good basis for future research. In this sense, Esparza-Iaizzo concludes, “What our study presents is a good methodology to demonstrate that, indeed, for the time being, synchrony cannot be brought into the world of systems with real-time operation. We hope it will serve as a paradigm for future attempts.”
News
Nanoparticle blueprints reveal path to smarter medicines
Lipid nanoparticles (LNPs) are the delivery vehicles of modern medicine, carrying cancer drugs, gene therapies and vaccines into cells. Until recently, many scientists assumed that all LNPs followed more or less the same blueprint, [...]
How nanomedicine and AI are teaming up to tackle neurodegenerative diseases
When I first realized the scale of the challenge posed by neurodegenerative diseases, such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis (ALS), I felt simultaneously humbled and motivated. These disorders are not caused [...]
Self-Organizing Light Could Transform Computing and Communications
USC engineers have demonstrated a new kind of optical device that lets light organize its own route using the principles of thermodynamics. Instead of relying on switches or digital control, the light finds its own [...]
Groundbreaking New Way of Measuring Blood Pressure Could Save Thousands of Lives
A new method that improves the accuracy of interpreting blood pressure measurements taken at the ankle could be vital for individuals who are unable to have their blood pressure measured on the arm. A newly developed [...]
Scientist tackles key roadblock for AI in drug discovery
The drug development pipeline is a costly and lengthy process. Identifying high-quality "hit" compounds—those with high potency, selectivity, and favorable metabolic properties—at the earliest stages is important for reducing cost and accelerating the path [...]
Nanoplastics with environmental coatings can sneak past the skin’s defenses
Plastic is ubiquitous in the modern world, and it's notorious for taking a long time to completely break down in the environment - if it ever does. But even without breaking down completely, plastic [...]
Chernobyl scientists discover black fungus feeding on deadly radiation
It looks pretty sinister, but it might actually be incredibly helpful When reactor number four in Chernobyl exploded, it triggered the worst nuclear disaster in history, one which the surrounding area still has not [...]
Long COVID Is Taking A Silent Toll On Mental Health, Here’s What Experts Say
Months after recovering from COVID-19, many people continue to feel unwell. They speak of exhaustion that doesn’t fade, difficulty breathing, or an unsettling mental haze. What’s becoming increasingly clear is that recovery from the [...]
Study Delivers Cancer Drugs Directly to the Tumor Nucleus
A new peptide-based nanotube treatment sneaks chemo into drug-resistant cancer cells, providing a unique workaround to one of oncology’s toughest hurdles. CiQUS researchers have developed a novel molecular strategy that allows a chemotherapy drug to [...]
Scientists Begin $14.2 Million Project To Decode the Body’s “Hidden Sixth Sense”
An NIH-supported initiative seeks to unravel how the nervous system tracks and regulates the body’s internal organs. How does your brain recognize when it’s time to take a breath, when your blood pressure has [...]
Scientists Discover a New Form of Ice That Shouldn’t Exist
Researchers at the European XFEL and DESY are investigating unusual forms of ice that can exist at room temperature when subjected to extreme pressure. Ice comes in many forms, even when made of nothing but water [...]
Nobel-winning, tiny ‘sponge crystals’ with an astonishing amount of inner space
The 2025 Nobel Prize in chemistry was awarded to Richard Robson, Susumu Kitagawa and Omar Yaghi on Oct. 8, 2025, for the development of metal-organic frameworks, or MOFs, which are tunable crystal structures with extremely [...]
Harnessing Green-Synthesized Nanoparticles for Water Purification
A new review reveals how plant- and microbe-derived nanoparticles can power next-gen water disinfection, delivering cleaner, safer water without the environmental cost of traditional treatments. A recent review published in Nanomaterials highlights the potential of green-synthesized nanomaterials (GSNMs) in [...]
Brainstem damage found to be behind long-lasting effects of severe Covid-19
Damage to the brainstem - the brain's 'control center' - is behind long-lasting physical and psychiatric effects of severe Covid-19 infection, a study suggests. Using ultra-high-resolution scanners that can see the living brain in [...]
CT scan changes over one year predict outcomes in fibrotic lung disease
Researchers at National Jewish Health have shown that subtle increases in lung scarring, detected by an artificial intelligence-based tool on CT scans taken one year apart, are associated with disease progression and survival in [...]
AI Spots Hidden Signs of Disease Before Symptoms Appear
Researchers suggest that examining the inner workings of cells more closely could help physicians detect diseases earlier and more accurately match patients with effective therapies. Researchers at McGill University have created an artificial intelligence tool capable of uncovering [...]














