Graphene is a multifunctional carbon nanomaterial widely synthesized for its applications in composites, energy storage, and sensors.
Although previous reviews mentioned that achieving an increased yield compromises graphene quality, limiting its commercialization, recent research on graphene highlighted the use of naturally abundant carbonaceous sources for the cost-effective production of graphene derivatives.
An article published in the journal Energy and Fuels discussed the recent advances in high-quality graphene synthesis from various naturally available carbonaceous materials with a glimpse of their potential scalability for commercialization. Moreover, previously reported synthetic strategies were explored to determine the most suitable technique to obtain high-quality graphene derivatives with good yield.
The application of graphene derivatives in the energy sector was also discussed, highlighting their importance for energy storage. The present review summarized the current scenario in graphene production and provided an insight into their cost-efficient production with high purity.
Graphene and Graphite
Among various carbon materials, graphene stands as an advanced carbonaceous material. Moreover, its high functionality is due to its distinct two-dimensional (2D) polymeric structure consisting of covalently bonded carbon atoms with sp2 hybridization, organized in a hexagonal lattice structure.
Moreover, the delocalized π-electrons present in the aromatic ring of graphene contribute to the improved thermal and electrical conductivity, tensile strength, high stiffness, high specific surface area, impermeability, and higher optical transparency, making graphene an important and cost-effective carbonaceous material for industrial applications.
Graphite is one of the reliable raw materials for graphene synthesis and has close structural similarity with it.
Coal for Graphene Derivatives
Coal is formed due to the natural coalification process and is popularly used to produce electrical energy. The three-dimensional framework of coal is composed of various inorganic and organic materials forming a complex heterogeneous mixture. Coal’s organic domains constitute aromatic/hydroaromatic and aliphatic carbon ring structures interconnected via aliphatic/ether linkages. On the other hand, the inorganic counterparts contain the constituents of sulfates, clays, silicates, carbonates, pyrites, and free minerals.
The aromatic/hydroaromatic/heterocyclic polycondensed carbon rings in coal, connected via the ether, methylene, and aromatic carbon-carbon linkages, form a fascinating organic framework within its structural matrix.
Anthracite coal has a high degree of coalification with several sp2 hybridized carbon microcrocrystals. The previously reported taixi anthracite was prepared from coal, wherein the raw coal was initially converted into graphite-like carbon material via graphitization at 2400 degrees Celsius for two hours and in the presence of iron (III) sulfate (Fe2(SO4)3) as a catalyst. Later the graphite-like carbon material was oxidized into graphite-like carbon oxides via the Hummers’ method.
On the other hand, bituminous coal, synthesized as raw material for coal-derived graphene films, involved initial electrolysis followed by a chemical vapor deposition (CVD) process. During the electrolysis, a coal electrolytic cell was used with a 4-molar concentration of sulfuric acid as an electrolyte.
40 millimolar iron (II) sulfate heptahydrate and 40 millimolar Fe2(SO4)3 were used as a source for iron ions alongside the addition of coal to the anodic solution. Later, the obtained coal char was treated with electrolysis treated with the CVD system.
Low-Cost Carbonaceous Precursor (LCP) and Biomass for Graphene Derivatives
Biomass-based materials are widely used as graphene precursors due to their structural and chemical favorability, facile operation, and low cost. A previous report mentioned peanut shells as agricultural waste biomass to synthesize few-layered graphene via probe sonication. Other biosources like grass and cockroach legs were also reported as precursors to obtaining monolayered graphene derivatives of high quality.
The LCP-based material serves as raw material for the high-scale production of low-cost graphene with optimal quality. The advantages of high yield and scalability of the LCP-based graphene derivatives enable their applicability in sensors, energy storage, water treatment, and catalysis. Since graphene is widely used in energy storage devices as electrode material, LCP-based graphene derivatives can meet the need for high-quality, low-cost graphene required for fabricating energy storage devices.
Conclusion
To summarize, naturally abundant, low-cost carbonaceous material was found to be an affordable and suitable source to produce commercial graphene. Graphene derivatives based on LCP showed excellent electrochemical properties for their energy storage applications. Despite the importance of graphite as a commercialized graphene precursor, low-cost carbon materials like coal fulfill the need for a cost-effective high-quality graphene derivative obtained commercially.
Additionally, the raw material and the synthetic methodology used in graphene synthesis highly impact the graphene characteristics. The LCP feedstock can serve as an efficient alternate precursor to coal for largescale commercialization of graphene derivatives economically.
News
AI Helped Scientists Stop a Virus With One Tiny Change
Using AI, researchers identified one tiny molecular interaction that viruses need to infect cells. Disrupting it stopped the virus before infection could begin. Washington State University scientists have uncovered a method to interfere with a key [...]
Deadly Hospital Fungus May Finally Have a Weakness
A deadly, drug-resistant hospital fungus may finally have a weakness—and scientists think they’ve found it. Researchers have identified a genetic process that could open the door to new treatments for a dangerous fungal infection [...]
Fever-Proof Bird Flu Variant Could Fuel the Next Pandemic
Bird flu viruses present a significant risk to humans because they can continue replicating at temperatures higher than a typical fever. Fever is one of the body’s main tools for slowing or stopping viral [...]
What could the future of nanoscience look like?
Society has a lot to thank for nanoscience. From improved health monitoring to reducing the size of electronics, scientists’ ability to delve deeper and better understand chemistry at the nanoscale has opened up numerous [...]
Scientists Melt Cancer’s Hidden “Power Hubs” and Stop Tumor Growth
Researchers discovered that in a rare kidney cancer, RNA builds droplet-like hubs that act as growth control centers inside tumor cells. By engineering a molecular switch to dissolve these hubs, they were able to halt cancer [...]
Platelet-inspired nanoparticles could improve treatment of inflammatory diseases
Scientists have developed platelet-inspired nanoparticles that deliver anti-inflammatory drugs directly to brain-computer interface implants, doubling their effectiveness. Scientists have found a way to improve the performance of brain-computer interface (BCI) electrodes by delivering anti-inflammatory drugs directly [...]
After 150 years, a new chapter in cancer therapy is finally beginning
For decades, researchers have been looking for ways to destroy cancer cells in a targeted manner without further weakening the body. But for many patients whose immune system is severely impaired by chemotherapy or radiation, [...]
Older chemical libraries show promise for fighting resistant strains of COVID-19 virus
SARS‑CoV‑2, the virus that causes COVID-19, continues to mutate, with some newer strains becoming less responsive to current antiviral treatments like Paxlovid. Now, University of California San Diego scientists and an international team of [...]
Lower doses of immunotherapy for skin cancer give better results, study suggests
According to a new study, lower doses of approved immunotherapy for malignant melanoma can give better results against tumors, while reducing side effects. This is reported by researchers at Karolinska Institutet in the Journal of the National [...]
Researchers highlight five pathways through which microplastics can harm the brain
Microplastics could be fueling neurodegenerative diseases like Alzheimer's and Parkinson's, with a new study highlighting five ways microplastics can trigger inflammation and damage in the brain. More than 57 million people live with dementia, [...]
Tiny Metal Nanodots Obliterate Cancer Cells While Largely Sparing Healthy Tissue
Scientists have developed tiny metal-oxide particles that push cancer cells past their stress limits while sparing healthy tissue. An international team led by RMIT University has developed tiny particles called nanodots, crafted from a metallic compound, [...]
Gold Nanoclusters Could Supercharge Quantum Computers
Researchers found that gold “super atoms” can behave like the atoms in top-tier quantum systems—only far easier to scale. These tiny clusters can be customized at the molecular level, offering a powerful, tunable foundation [...]
A single shot of HPV vaccine may be enough to fight cervical cancer, study finds
WASHINGTON -- A single HPV vaccination appears just as effective as two doses at preventing the viral infection that causes cervical cancer, researchers reported Wednesday. HPV, or human papillomavirus, is very common and spread [...]
New technique overcomes technological barrier in 3D brain imaging
Scientists at the Swiss Light Source SLS have succeeded in mapping a piece of brain tissue in 3D at unprecedented resolution using X-rays, non-destructively. The breakthrough overcomes a long-standing technological barrier that had limited [...]
Scientists Uncover Hidden Blood Pattern in Long COVID
Researchers found persistent microclot and NET structures in Long COVID blood that may explain long-lasting symptoms. Researchers examining Long COVID have identified a structural connection between circulating microclots and neutrophil extracellular traps (NETs). The [...]
This Cellular Trick Helps Cancer Spread, but Could Also Stop It
Groups of normal cbiells can sense far into their surroundings, helping explain cancer cell migration. Understanding this ability could lead to new ways to limit tumor spread. The tale of the princess and the [...]















