We’ve all been more aware of lung health since Covid-19.
However, for people with asthma and chronic obstructive pulmonary disease (COPD), dealing with lung problems is a lifelong struggle. Those with COPD suffer from highly inflamed lung tissue that swells and obstructs airways, making it hard to breathe. The disease is common, with more than three million annual cases in the US alone.
Although manageable, there is no cure. One problem is that lungs with COPD pump out tons of viscous mucus, which forms a barrier preventing treatments from reaching lung cells. The slimy substance—when not coughed out—also attracts bacteria, further aggravating the condition.
A new study in Science Advances describes a potential solution. Scientists have developed a nanocarrier to shuttle antibiotics into the lungs. Like a biological spaceship, the carrier has “doors” that open and release antibiotics inside the mucus layer to fight infections.
The “doors” themselves are also deadly. Made from a small protein, they rip apart bacterial membranes and clean up their DNA to rid lung cells of chronic infection.
The team engineered an inhalable version of an antibiotic using the nanocarrier. In a mouse model of COPD, the treatment revived their lung cells in just three days. Their blood oxygen levels returned to normal, and previous signs of lung damage slowly healed.
“This immunoantibacterial strategy may shift the current paradigm of COPD management,” the team wrote in the article.
Breathe Me
Lungs are extremely delicate. Picture thin but flexible layers of cells separated into lobes to help coordinate oxygen flow into the body. Once air flows through the windpipe, it rapidly disperses among a complex network of branches, filling thousands of air sacs that supply the body with oxygen while ridding it of carbon dioxide.
These structures are easily damaged, and smoking is a common trigger. Cigarette smoke causes surrounding cells to pump out a slimy substance that obstructs the airway and coats air sacs, making it difficult for them to function normally.
In time, the mucus builds a sort of “glue” that attracts bacteria and condenses into a biofilm. The barrier further blocks oxygen exchange and changes the lung’s environment into one favorable for bacteria growth.
One way to stop the downward spiral is to obliterate the bacteria. Broad-spectrum antibiotics are the most widely used treatment. But because of the slimy protective layer, they can’t easily reach bacteria deep inside lung tissues. Even worse, long-term treatment increases the chance of antibiotic resistance, making it even more difficult to wipe out stubborn bacteria.
But the protective layer has a weakness: It’s just a little bit too sour. Literally.
Open-Door Policy
Like a lemon, the slimy layer is slightly more acidic compared to healthy lung tissue. This quirk gave the team an idea for an ideal antibiotic carrier that would only release its payload in an acidic environment.
The team made hollow nanoparticles out of silica—a flexible biomaterial—filled them with a common antibiotic, and added “doors” to release the drugs.
These openings are controlled by additional short protein sequences that work like “locks.” In normal airway and lung environments, they fold up at the door, essentially sequestering the antibiotics inside the bubble.
Released in lungs with COPD, the local acidity changes the structure of the lock protein, so the doors open and release antibiotics directly into the mucus and biofilm—essentially breaking through the bacterial defenses and targeting them on their home turf.
One test with the concoction penetrated a lab-grown biofilm in a petri dish. It was far more effective compared to a previous type of nanoparticle, largely because the carrier’s doors opened once inside the biofilm—in other nanoparticles, the antibiotics remained trapped.
The carriers could also dig deeper into infected areas. Cells have electrical charges. The carrier and mucus both have negative charges, which—like similarly charged ends of two magnets—push the carriers deeper into and through the mucus and biofilm layers.
Along the way, the acidity of the mucus slowly changes the carrier’s charge to positive, so that once past the biofilm, the “lock” mechanism opens and releases medication.
The team also tested the nanoparticle’s ability to obliterate bacteria. In a dish, they wiped out multiple common types of infectious bacteria and destroyed their biofilms. The treatment appeared relatively safe. Tests in human fetal lung cells in a dish found minimal signs of toxicity.
Surprisingly, the carrier itself could also destroy bacteria. Inside an acidic environment, its positive charge broke down bacterial membranes. Like popped balloons, the bugs released genetic material into their surroundings, which the carrier swept up.
Damping the Fire
Bacterial infections in the lungs attract overactive immune cells, which leads to swelling. Blood vessels surrounding air sacs also become permeable, making it easier for dangerous molecules to get through. These changes cause inflammation, making it hard to breathe.
In a mouse model of COPD, the inhalable nanoparticle treatment quieted the overactive immune system. Multiple types of immune cells returned to a healthy level of activation—allowing the mice to switch from a highly inflammatory profile to one that combats infections and inflammation.
Mice treated with the inhalable nanoparticle had about 98 percent less bacteria in their lungs, compared to those given the same antibiotic without the carrier.
Wiping out bacteria gave the mice a sigh of relief. They breathed easier. Their blood oxygen levels went up, and blood acidity—a sign of dangerously low oxygen—returned to normal.
Under the microscope, treated lungs restored normal structures, with sturdier air sacks that slowly recovered from COPD damage. The treated mice also had less swelling in their lungs from fluid buildup that’s commonly seen in lung injuries.
The results, while promising, are only for a smoking-related COPD model in mice. There’s still much we don’t know about the treatment’s long-term consequences.
Although for now there were no signs of side effects, it’s possible the nanoparticles could accumulate inside the lungs over time eventually causing damage. And though the carrier itself damages bacterial membranes, the therapy mostly relies on the encapsulated antibiotic. With antibiotic resistance on the rise, some drugs are already losing effect for COPD.
Then there’s the chance of mechanical damage over time. Repeatedly inhaling silicon-based nanoparticles could cause lung scarring in the long term. So, while nanoparticles could shift strategies for COPD management, it’s clear we need follow-up studies, the team wrote.
Image Credit:

News
The CDC buried a measles forecast that stressed the need for vaccinations
This story was originally published on ProPublica, a nonprofit newsroom that investigates abuses of power. Sign up to receive our biggest stories as soon as they’re published. ProPublica — Leaders at the Centers for Disease Control and Prevention [...]
Light-Driven Plasmonic Microrobots for Nanoparticle Manipulation
A recent study published in Nature Communications presents a new microrobotic platform designed to improve the precision and versatility of nanoparticle manipulation using light. Led by Jin Qin and colleagues, the research addresses limitations in traditional [...]
Cancer’s “Master Switch” Blocked for Good in Landmark Study
Researchers discovered peptides that permanently block a key cancer protein once thought untreatable, using a new screening method to test their effectiveness inside cells. For the first time, scientists have identified promising drug candidates [...]
AI self-cloning claims: A new frontier or a looming threat?
Chinese scientists claim that some AI models can replicate themselves and protect against shutdown. Has artificial intelligence crossed the so-called red line? Chinese researchers have published two reports on arXiv claiming that some artificial [...]
New Drug Turns Human Blood Into Mosquito-Killing Weapon
Nitisinone, a drug for rare diseases, kills mosquitoes when present in human blood and may become a new tool to fight malaria, offering longer-lasting, environmentally safer effects than ivermectin. Controlling mosquito populations is a [...]
DNA Microscopy Creates 3D Maps of Life From the Inside Out
What if you could take a picture of every gene inside a living organism—not with light, but with DNA itself? Scientists at the University of Chicago have pioneered a revolutionary imaging technique called volumetric DNA microscopy. It builds [...]
Scientists Just Captured the Stunning Process That Shapes Chromosomes
Scientists at EMBL have captured how human chromosomes fold into their signature rod shape during cell division, using a groundbreaking method called LoopTrace. By observing overlapping DNA loops forming in high resolution, they revealed that large [...]
Bird Flu Virus Is Mutating Fast – Scientists Say Our Vaccines May Not Be Enough
H5N1 influenza is evolving rapidly, weakening the effectiveness of existing antibodies and increasing its potential threat to humans. Scientists at UNC Charlotte and MIT used high-performance computational modeling to analyze thousands of viral protein-antibody interactions, revealing [...]
Revolutionary Cancer Vaccine Targets All Solid Tumors
The method triggers immune responses that inhibit melanoma, triple-negative breast cancer, lung carcinoma, and ovarian cancer. Cancer treatment vaccines have been in development since 2010, when the first was approved for prostate cancer, followed [...]
Scientists Uncover Hidden Protein Driving Autoimmune Attacks
Scientists have uncovered a critical piece of the puzzle in autoimmune diseases: a protein that helps release immune response molecules. By studying an ultra-rare condition, researchers identified ArfGAP2 as a key player in immune [...]
Mediterranean neutrino observatory sets new limits on quantum gravity
Quantum gravity is the missing link between general relativity and quantum mechanics, the yet-to-be-discovered key to a unified theory capable of explaining both the infinitely large and the infinitely small. The solution to this [...]
Challenging Previous Beliefs: Japanese Scientists Discover Hidden Protector of Heart
A Japanese research team found that the oxidized form of glutathione (GSSG) may protect heart tissue by modifying a key protein, potentially offering a novel therapeutic approach for ischemic heart failure. A new study [...]
Millions May Have Long COVID – So Why Can’t They Get Diagnosed?
Millions of people in England may be living with Long Covid without even realizing it. A large-scale analysis found that nearly 10% suspect they might have the condition but remain uncertain, often due to [...]
Researchers Reveal What Happens to Your Brain When You Don’t Get Enough Sleep
What if poor sleep was doing more than just making you tired? Researchers have discovered that disrupted sleep in older adults interferes with the brain’s ability to clean out waste, leading to memory problems [...]
How to prevent chronic inflammation from zombie-like cells that accumulate with age
In humans and other multicellular organisms, cells multiply. This defining feature allows embryos to grow into adulthood, and enables the healing of the many bumps, bruises and scrapes along the way. Certain factors can [...]
Breakthrough for long Covid patients who lost sense of smell
A breakthrough nasal surgery has restored the sense of smell for a dozen long Covid patients. Experts at University College London Hospitals NHS Foundation Trust successfully employed a technique typically used for correcting blocked nasal passages, [...]