In a recent study published in Scientific Reports, researchers reported that drug adsorption on micro- and nano-plastics (MNPs) has severe consequences.
Introduction
Plastic degradation results in the formation of particles with diverse shapes, sizes, and compositions. Research suggests these micro- and nano-sized fragments, viz., MNPs, are present in the environment and enter the human body, even cells.
MNPs can adsorb different substances and deliver them to living organisms. Endocrine disruptors are among the compounds that enter life forms and trigger toxic effects.
Residual drugs in wastewater could enter the human and animal bodies, causing physiological changes. This is particularly concerning in the case of antimicrobials; bacteria exposed to these compounds may develop resistance.
Further, the abundance of resistance genes has increased due to the continuous anthropogenic use (or misuse) of antimicrobials. Besides, MNPs provide a surface for microbes to colonize, serving as vectors for transmission.
About the study
In the present study, researchers assessed the interactions of tetracycline (TC), a broad-spectrum antibiotic, with nanoplastics and whether its biological activity is altered.
Four types of plastics were selected: polystyrene (PS), polyethylene (PE), nylon 6,6 (N66), and polypropylene (PP); these were henceforth referred to as NPs instead of MNPs because their sizes did not exceed the nanoscale. Two approaches were employed to generate TC-NP complexes through chemical computation.
First, the NP was folded from individual polymer chains in the presence of TC through multiple simulated annealing (SA) setups. In the second approach, the free particle (FP) method, the NP was pre-folded through SA, and TC was placed on its surface in different orientations.
All conformations underwent geometry optimization. Further, semi-empirical quantum chemical calculations were performed, and sorption energies and binding modes were derived from these calculations.
Two molecular dynamics simulations were performed for each NP to analyze the solvation behavior and temperature influence of the TC-NP aggregates.
Finally, the researchers evaluated the effects of plastic particles (PE terephthalate (PET), PS, or PE) on the activity of TC in mouse and human cell lines, in which the expression of a fluorescent reporter protein was regulated by a TC-controlled promoter.
Findings
The FP and SA approaches generated 104 aggregates for each NP. The relative total energies of the structures were variable. FP data scattered less since these conformer aggregates varied exclusively in their surface structure. Scattering was the lowest for PE but the highest for PS and PP.
The refolding of TC-NP complexes in the SA method allowed for adjusting the polymer chains to TC and selecting the best possible conformation to maximize the sum of NP-TC and NP-NP interplay.
The FP method yielded considerably less stable structures compared to the SA approach. Overall, the SA approach performed better than the FP method.
On PE, the less polar side of TC was attached to the NP, and the hydroxyl, amide, and carbonyl groups were pointed toward the aqueous solvent. In contrast, on N66, TC alignment was the opposite, and the polar-polar interactions between TC and N66 were stronger than their solvation.
In the SA method, TC was often inside the NP, buried beneath the polymer chains. Further, molecular dynamics simulations of two TC-NP structures of each plastic in water revealed significant differences in the mobilities of the NP chains.
PS chains were the least mobile, with the largest functional groups attached to their polyolefin backbone that may provide steric hindrance or friction.
Likewise, N66 movement was also hindered due to the strong hydrogen bonds between amide groups. The rearrangement of PP was remarkable, with nearly two times greater deviations than the starting structures, suggesting it could rearrange enough to accommodate TC within.
Further, TC diffused significantly on the top of N66 and PP particles. While TC detached from PS during equilibration, it re-attached over time.
In simulations starting with TC on the surface of NPs, the number of hydrogen bonds was high, with many hydrogen-bond acceptor and donor sites occupied with a water molecule.
In contrast, there were significant differences in simulations that started with TC inside the NPs. PS and N66 retained the drug molecule inside them; as such, the hydrogen bonding sites of TC were inaccessible to water molecules.
Moreover, N66 hydrogen bonding sites can interact with TC; thus, they compete with water for the antibiotic. For PP and PE, the number of hydrogen bonds between TC and water was high, similar to those in simulations with TC on the surface of NPs.
Finally, incubating cells with PS, PE, or PET significantly reduced TC-induced expression of the fluorescent reporter protein in both cell lines.
Conclusions
Taken together, the study investigated the interactions of NPs with TC. Folding the NPs in the presence of TC resulted in high-energy structures, enabling reorientation and adjustment of polymer chains to the drug. The SA method yielded the most stable TC-NP complexes. Moreover, TC was more often situated inside the NPs.
Further, in vitro experiments showed that the effect of TC was significantly reduced in the presence of plastics. Overall, the findings indicate that MNPs pose substantial health risks, as they may alter drug absorption, facilitate drug transport to new locations, and increase local concentrations of the antibiotic, potentially promoting resistance.
- Dick L, Batista PR, Zaby P, et al. (2024) The adsorption of drugs on nanoplastics has severe biological impact. Scientific Reports. doi: 10.1038/s41598-024-75785-4. https://www.nature.com/articles/s41598-024-75785-4
News
First U.S. H5N1 Death Sparks Urgency: Scientists Warn Bird Flu Is Mutating Faster Than Expected
A human strain of H5N1 bird flu isolated in Texas shows mutations enabling better replication in human cells and causing more severe disease in mice compared to a bovine strain. While the virus isn’t [...]
AI Breakthrough in Nanotechnology Shatters Limits of Precision
At TU Graz, a pioneering research group is leveraging artificial intelligence to drastically enhance the way nanostructures are constructed. They aim to develop a self-learning AI system that can autonomously position molecules with unprecedented precision, potentially [...]
How Missing Sleep Lets Bad Memories Haunt Your Mind
Research reveals that a lack of sleep can hinder the brain’s ability to suppress unwanted memories and intrusive thoughts, emphasizing the importance of restful sleep for mental health. Sleep deprivation has been found to [...]
WHO issues new warning over ‘mystery virus’ and calls for return of COVID restrictions
The World Health Organization (WHO) has called for the reinstatement of restrictions implemented during the COVID-19 pandemic as cases of human metapneumovirus (HMPV) continue to surge. While hospitals in China are overwhelmed with positive [...]
A Breath Away From a Cure: How Xenon Gas Could Transform Alzheimer’s Treatment
A breakthrough study highlights Xenon gas as a potential game-changer in treating Alzheimer’s disease, demonstrating its ability to mitigate brain damage and improve cognitive functions in mouse models. A forthcoming clinical trial aims to test its [...]
False Memories Under Fire: Surprising Science Behind What We Really Recall
New research challenges the ease of implanting false memories, highlighting flaws in the influential “Lost in the Mall” study. By reexamining the data from a previous study, researchers found that many supposed false memories [...]
Born Different? Cambridge Scientists Uncover Innate Sex Differences in Brains
Cambridge researchers found that sex differences in brain structure exist from birth, with males having more white matter and females more grey matter, highlighting early neurodiversity. Research from the Autism Research Centre at the University [...]
New study shows risk factors for dementia – virus causes deposits in the brain
Research into the causes of Alzheimer's is not yet complete. Now a new study shows that head trauma can activate herpes viruses and promote the disease. Frankfurt am Main – As a neurodegenerative disease, [...]
Are Machines Truly Thinking? Modern AI Systems Have Finally Achieved Turing’s Vision
Modern AI systems have fulfilled Turing’s vision of machines that learn and converse like humans, but challenges remain. A new paper highlights concerns about energy consumption and societal inequality while calling for more robust [...]
The Surprising Link Between Smell, Sound, and Emotions
New research reveals how smell and hearing interact in the brain to drive social behavior, using mouse maternal instincts as a model. Imagine you’re at a dinner party, but you can’t smell the food [...]
Brain cells age at different rates
As our body ages, not only joints, bones and muscles wear out, but also our nervous system. Nerve cells die, are no longer fully replaced, and the brain shrinks. "Aging is the most important risk factor [...]
Long COVID Breakthrough: Spike Proteins Persist in Brain for Years
Researchers have discovered that the SARS-CoV-2 spike protein persists in the brain and skull bone marrow for years after infection, potentially leading to chronic inflammation and neurodegenerative diseases. Researchers from Helmholtz Munich and Ludwig-Maximilians-Universität (LMU) have [...]
Water-Resistant Paper Could Revolutionize Packaging and Replace Plastic
A groundbreaking study showcases the creation of sustainable hydrophobic paper, enhanced by cellulose nanofibres and peptides, presenting a biodegradable alternative to petroleum-based materials, with potential uses in packaging and biomedical devices. Researchers aimed to [...]
NIH Scientists Discover Game-Changing Antibodies Against Malaria
Novel antibodies have the potential to pave the way for the next generation of malaria interventions. Researchers at the National Institutes of Health (NIH) have identified a novel class of antibodies that target a previously unexplored region [...]
Surprising Discovery: What If Some Cancer Genes Are Actually Protecting You?
A surprising discovery reveals that a gene previously thought to accelerate esophageal cancer actually helps protect against it initially. This pivotal study could lead to better prediction and prevention strategies tailored to individual genetic [...]
The Cancer Test That Exposes What Conventional Scans Miss
Researchers at UCLA have unveiled startling findings using PSMA-PET imaging that reveal nearly half of patients diagnosed with high-risk prostate cancer might actually have metastases missed by traditional imaging methods. This revelation could profoundly affect future [...]