In a recent study published in Scientific Reports, researchers reported that drug adsorption on micro- and nano-plastics (MNPs) has severe consequences.
Introduction
Plastic degradation results in the formation of particles with diverse shapes, sizes, and compositions. Research suggests these micro- and nano-sized fragments, viz., MNPs, are present in the environment and enter the human body, even cells.
MNPs can adsorb different substances and deliver them to living organisms. Endocrine disruptors are among the compounds that enter life forms and trigger toxic effects.
Residual drugs in wastewater could enter the human and animal bodies, causing physiological changes. This is particularly concerning in the case of antimicrobials; bacteria exposed to these compounds may develop resistance.
Further, the abundance of resistance genes has increased due to the continuous anthropogenic use (or misuse) of antimicrobials. Besides, MNPs provide a surface for microbes to colonize, serving as vectors for transmission.
About the study
In the present study, researchers assessed the interactions of tetracycline (TC), a broad-spectrum antibiotic, with nanoplastics and whether its biological activity is altered.
Four types of plastics were selected: polystyrene (PS), polyethylene (PE), nylon 6,6 (N66), and polypropylene (PP); these were henceforth referred to as NPs instead of MNPs because their sizes did not exceed the nanoscale. Two approaches were employed to generate TC-NP complexes through chemical computation.
First, the NP was folded from individual polymer chains in the presence of TC through multiple simulated annealing (SA) setups. In the second approach, the free particle (FP) method, the NP was pre-folded through SA, and TC was placed on its surface in different orientations.
All conformations underwent geometry optimization. Further, semi-empirical quantum chemical calculations were performed, and sorption energies and binding modes were derived from these calculations.
Two molecular dynamics simulations were performed for each NP to analyze the solvation behavior and temperature influence of the TC-NP aggregates.
Finally, the researchers evaluated the effects of plastic particles (PE terephthalate (PET), PS, or PE) on the activity of TC in mouse and human cell lines, in which the expression of a fluorescent reporter protein was regulated by a TC-controlled promoter.
Findings
The FP and SA approaches generated 104 aggregates for each NP. The relative total energies of the structures were variable. FP data scattered less since these conformer aggregates varied exclusively in their surface structure. Scattering was the lowest for PE but the highest for PS and PP.
The refolding of TC-NP complexes in the SA method allowed for adjusting the polymer chains to TC and selecting the best possible conformation to maximize the sum of NP-TC and NP-NP interplay.
The FP method yielded considerably less stable structures compared to the SA approach. Overall, the SA approach performed better than the FP method.
On PE, the less polar side of TC was attached to the NP, and the hydroxyl, amide, and carbonyl groups were pointed toward the aqueous solvent. In contrast, on N66, TC alignment was the opposite, and the polar-polar interactions between TC and N66 were stronger than their solvation.
In the SA method, TC was often inside the NP, buried beneath the polymer chains. Further, molecular dynamics simulations of two TC-NP structures of each plastic in water revealed significant differences in the mobilities of the NP chains.
PS chains were the least mobile, with the largest functional groups attached to their polyolefin backbone that may provide steric hindrance or friction.
Likewise, N66 movement was also hindered due to the strong hydrogen bonds between amide groups. The rearrangement of PP was remarkable, with nearly two times greater deviations than the starting structures, suggesting it could rearrange enough to accommodate TC within.
Further, TC diffused significantly on the top of N66 and PP particles. While TC detached from PS during equilibration, it re-attached over time.
In simulations starting with TC on the surface of NPs, the number of hydrogen bonds was high, with many hydrogen-bond acceptor and donor sites occupied with a water molecule.
In contrast, there were significant differences in simulations that started with TC inside the NPs. PS and N66 retained the drug molecule inside them; as such, the hydrogen bonding sites of TC were inaccessible to water molecules.
Moreover, N66 hydrogen bonding sites can interact with TC; thus, they compete with water for the antibiotic. For PP and PE, the number of hydrogen bonds between TC and water was high, similar to those in simulations with TC on the surface of NPs.
Finally, incubating cells with PS, PE, or PET significantly reduced TC-induced expression of the fluorescent reporter protein in both cell lines.
Conclusions
Taken together, the study investigated the interactions of NPs with TC. Folding the NPs in the presence of TC resulted in high-energy structures, enabling reorientation and adjustment of polymer chains to the drug. The SA method yielded the most stable TC-NP complexes. Moreover, TC was more often situated inside the NPs.
Further, in vitro experiments showed that the effect of TC was significantly reduced in the presence of plastics. Overall, the findings indicate that MNPs pose substantial health risks, as they may alter drug absorption, facilitate drug transport to new locations, and increase local concentrations of the antibiotic, potentially promoting resistance.
- Dick L, Batista PR, Zaby P, et al. (2024) The adsorption of drugs on nanoplastics has severe biological impact. Scientific Reports. doi: 10.1038/s41598-024-75785-4. https://www.nature.com/articles/s41598-024-75785-4
News
World First: Stem Cell Transplant Restores Vision in Multiple People
A radical stem cell transplant has significantly improved the blurry vision of three people with severe damage to their cornea. The clinical trial, which took place in Japan, is the first of its kind in the world, [...]
Clinical Trial: Mushroom Supplement May Halt Prostate Cancer Growth
The bidirectional research examines both laboratory findings and human clinical trial data, revealing that the medicinal use of white button mushrooms reduces the type of cells that suppress the immune system and facilitate the [...]
Scientists propose drug-free method to combat antibiotic-resistant bacteria
Recent estimates indicate that deadly antibiotic-resistant infections will rapidly escalate over the next quarter century. More than 1 million people died from drug-resistant infections each year from 1990 to 2021, a recent study reported, with [...]
New study shows how salmonella tricks gut defenses to cause infection
A new UC Davis Health study has uncovered how Salmonella bacteria, a major cause of food poisoning, can invade the gut even when protective bacteria are present. The research, published in the Proceedings of the National Academy [...]
Chlamydia vaccine shows early promise in mice
An experimental vaccine has shown promise in protecting against the sexually transmitted disease chlamydia, researchers report. Lab mice given the vaccine were able to rapidly clear subsequent chlamydia infections, and were less likely to [...]
Contradictory Discovery: Our Innate Immune System May Fuel Cancer Development
MSK researchers discovered that the innate immune system’s chronic activation due to issues in the Mre11 complex can lead to cancer, highlighting new therapeutic targets. In addition to defending against pathogens, the body’s innate [...]
New study links circadian gene variants to winter depression
Findings suggest that PER3 gene variants prevent adrenal adaptation to winter daylight, leading to serotonin disruption and depression-like behaviors. A recent study in Nature Metabolism used humanized mice with modified PERIOD3 gene variants (P415A and H417R) [...]
Quantum Leap for MRI: Atomic Sensors Unlock New Imaging Potential
New atomic sensor technology enhances MRI quality control by tracking hyperpolarized molecules in real-time, with potential benefits for various scientific fields. Magnetic resonance imaging (MRI) is a fundamental tool in modern medicine, offering detailed [...]
MethylGPT unlocks DNA secrets for age and disease prediction
By harnessing advanced AI, MethylGPT decodes DNA methylation with unprecedented accuracy, offering new paths for age prediction, disease diagnosis, and personalized health interventions. In a recent study posted to the bioRxiv preprint* server, researchers developed a [...]
“Astonishing” – Scientists Unveil First Blueprint of the Most Complex Molecular Machine in Human Biology
Researchers unveil the inner mechanisms of the most intricate and complex molecular machine in human biology. Scientists at the Centre for Genomic Regulation (CRG) in Barcelona have developed the first comprehensive blueprint of the [...]
Breakthrough research reveals how to target malignant DNA in aggressive cancers
Scientists have discovered a way to target elusive circular fragments of DNA that drive the survival of some of the most aggressive cancers, paving the way for future treatments. In three groundbreaking papers published [...]
How bacteria trigger colon cancer
In a recent study published in Nature, scientists used murine models to investigate how certain bacteria, such as Escherichia coli strains that contain a polyketide synthase (pks) island encoding enzymes that produce colibactin genotoxin, could increase the [...]
Nanoparticles designed to trap and neutralise large amounts of SARS-CoV2
(Nanowerk News) Researchers from the IBB-UAB have developed a new class of nanostructures capable of trapping and neutralising large quantities of the SARS-CoV2 virus particles, both in liquid solutions and on the surface of [...]
Nanodiscs: What Are They and How Are They Shaping the Future of Medicine?
Nanodiscs are synthetic phospholipid particles with a distinct morphology and size that enhance their efficiency in drug delivery applications.1 First developed by Sligar et al. in the early 2000s, these model membrane systems measure around 10 [...]
New Discovery Reveals How Ovarian Cancer Starves Immune Cells
Researchers discovered that ovarian tumors hinder T cells’ energy supply by trapping a key protein, blocking lipid uptake. A new approach to reprogram T cells could enhance immunotherapy for aggressive cancers. Researchers at Weill Cornell [...]
Innovative Drug-Design Strategies to Overcome Antibacterial Resistance
Antibacterial resistance occurs when antibiotics fail to treat bacterial infections. This incidence is considered one of the top global health threats, stemming from the misuse or overuse of antibiotics in humans and animals.1 The [...]