In March 2020, Hannu Rajaniemi pivoted his biotech company Helix Nanotechnologies’ focus from cancer therapies to Covid-19 vaccines.
The role biotech start-ups can play in a pandemic
Rajaniemi originally co-founded Helix Nanotechnologies in Cambridge, Massachusetts in 2013 to develop cancer therapeutics, which was a personal mission: His mother got sick with and eventually passed due to metastatic breast cancer.
When the company pivoted to working on Covid-19 vaccines, he knew his start-up wouldn’t be one of the first vaccines out of the gate.
“That would have required billions in [Operation] Warp Speed funding,” Rajaniemi says. (HelixNano has received $6.4 million in total funding as of May, according to Crunchbase, from investors including Y Combinator, and has received grant money from Google billionaire Eric Schmidt’s Schmidt Futures.
“In this crisis, the role of a start-up is to pursue more technically challenging, second-generation approaches and find solutions that the less agile bigger players might miss,” he says.
While the first wave of Covid vaccines distributed in the United states from Pfizer/BioNTech, Moderna and Johnson & Johnson have to adapt their vaccines to new strains, HelixNano’s booster vaccine is designed to “provide much broader immunity,” he says.
“The reason we got into this … was that we were worried about mutated SARS-CoV-2 strains able to evade vaccine immunity,” Rajaniemi says. “That is exactly the scenario that is now playing out with the South African, Brazilian and other emerging variants.”
New vaccine technologies: Essentially ‘a zoom function and an amplify function’
Developing a vaccine that is resistant to virus mutations is “an extremely challenging problem technically,” Rajaniemi says.
But with the advantage of being able to build on all the knowledge scientists now have about the virus, HelixNano invented “two completely new vaccine technologies” for which they’ve filed for patents, according to Rajaniemi.
“Essentially, we have a ‘zoom’ function and an ‘amplify’ function for mRNA vaccines,” he says. (Both the Pfizer-BioNTech and Moderna vaccines are mRNA technology, as is Helix Nanotechnologies’ booster.)
“We can make vaccines both more targeted and more powerful than was previously possible,” says Rajaniemi.
The first technology Helix Nanotechnologies developed makes vaccines more accurate.
“Traditional vaccines are blunt instruments. You show the immune system a bit of the virus — like the spike protein that SARS-CoV-2 uses to infect cells — and [the body] generates antibodies against it,” Rajaniemi says. And “those antibodies are essentially random.”
However, HelixNano’s new technology directs antibodies at a very specific part of the virus’ spike protein that “matters the most for preventing infection,” according to Rajaniemi.
“To use a nerdy analogy, imagine the virus is the Death Star [space station from Star Wars]. To blow it up you need to hit a very small target — the thermal exhaust port,” says Rajaniemi (who is also a published science fiction author).
“Your X-Wings [starfighters] could just randomly fire at the whole Death Star, but you would have to get very, very lucky to destroy it,” he says.
“But if you concentrate all your fire on the exhaust port, you have a much better chance — even if your shots get less accurate as the virus mutates.”
The second vaccine technology HelixNano developed is a way to multiply the body’s immune response to a specific vaccine target by a factor of 100.
© Provided by CNBC
Taken together, these two technological advances are what HelixNano has used to build their Covid-19 mutation-resistant booster vaccine.
Beyond its own vaccine technology innovations, HelixNano is also collaborating with Louis Falo’s lab at University of Pittsburgh to make a vaccine technology that can be applied to the skin, rather than by a shot, which therefore can be self-administered.
“The mRNA platform has proven to be effective for vaccination, but does have limitations including the requirement for very low temperatures (cold-chain) across the storage, delivery, and deployment process,” says Falo, who is chairman of the dermatology department at the University of Pittsburgh and a bioengineering professor.
“We imagine an mRNA vaccine that is stable at room temperature and can therefore be readily deployed in global vaccination campaigns the same way that one would distribute and apply Band-Aids.”
(Separately, Falo’s lab has its own skin application vaccine called PittCoVacc, which has submitted preclinical data to the Food and Drug Administration as a Pre-Investigational New Drug Application application.)
Image Credit: CNBC
Post by Amanda Scott, NA CEO. Follow her on twitter @tantriclens
Thanks to Heinz V. Hoenen. Follow him on twitter: @HeinzVHoenen

News
Drug-Coated Neural Implants Reduce Immune Rejection
Summary: A new study shows that coating neural prosthetic implants with the anti-inflammatory drug dexamethasone helps reduce the body’s immune response and scar tissue formation. This strategy enhances the long-term performance and stability of electrodes [...]
Scientists discover cancer-fighting bacteria that ‘soak up’ forever chemicals in the body
A family of healthy bacteria may help 'soak up' toxic forever chemicals in the body, warding off their cancerous effects. Forever chemicals, also known as PFAS (per- and polyfluoroalkyl substances), are toxic chemicals that [...]
Johns Hopkins Researchers Uncover a New Way To Kill Cancer Cells
A new study reveals that blocking ribosomal RNA production rewires cancer cell behavior and could help treat genetically unstable tumors. Researchers at the Johns Hopkins Kimmel Cancer Center and the Department of Radiation Oncology and Molecular [...]
AI matches doctors in mapping lung tumors for radiation therapy
In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called [...]
Scientists Finally “See” Key Protein That Controls Inflammation
Researchers used advanced microscopy to uncover important protein structures. For the first time, two important protein structures in the human body are being visualized, thanks in part to cutting-edge technology at the University of [...]
AI tool detects 9 types of dementia from a single brain scan
Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single, widely available scan—a transformative [...]
Is plastic packaging putting more than just food on your plate?
New research reveals that common food packaging and utensils can shed microscopic plastics into our food, prompting urgent calls for stricter testing and updated regulations to protect public health. Beyond microplastics: The analysis intentionally [...]
Aging Spreads Through the Bloodstream
Summary: New research reveals that aging isn’t just a local cellular process—it can spread throughout the body via the bloodstream. A redox-sensitive protein called ReHMGB1, secreted by senescent cells, was found to trigger aging features [...]
AI and nanomedicine find rare biomarkers for prostrate cancer and atherosclerosis
Imagine a stadium packed with 75,000 fans, all wearing green and white jerseys—except one person in a solid green shirt. Finding that person would be tough. That's how hard it is for scientists to [...]
Are Pesticides Breeding the Next Pandemic? Experts Warn of Fungal Superbugs
Fungicides used in agriculture have been linked to an increase in resistance to antifungal drugs in both humans and animals. Fungal infections are on the rise, and two UC Davis infectious disease experts, Dr. George Thompson [...]
Scientists Crack the 500-Million-Year-Old Code That Controls Your Immune System
A collaborative team from Penn Medicine and Penn Engineering has uncovered the mathematical principles behind a 500-million-year-old protein network that determines whether foreign materials are recognized as friend or foe. How does your body [...]
Team discovers how tiny parts of cells stay organized, new insights for blocking cancer growth
A team of international researchers led by scientists at City of Hope provides the most thorough account yet of an elusive target for cancer treatment. Published in Science Advances, the study suggests a complex signaling [...]
Nanomaterials in Ophthalmology: A Review
Eye diseases are becoming more common. In 2020, over 250 million people had mild vision problems, and 295 million experienced moderate to severe ocular conditions. In response, researchers are turning to nanotechnology and nanomaterials—tools that are transforming [...]
Natural Plant Extract Removes up to 90% of Microplastics From Water
Researchers found that natural polymers derived from okra and fenugreek are highly effective at removing microplastics from water. The same sticky substances that make okra slimy and give fenugreek its gel-like texture could help [...]
Instant coffee may damage your eyes, genetic study finds
A new genetic study shows that just one extra cup of instant coffee a day could significantly increase your risk of developing dry AMD, shedding fresh light on how our daily beverage choices may [...]
Nanoneedle patch offers painless alternative to traditional cancer biopsies
A patch containing tens of millions of microscopic nanoneedles could soon replace traditional biopsies, scientists have found. The patch offers a painless and less invasive alternative for millions of patients worldwide who undergo biopsies [...]