Melbourne researchers have made a world first breakthrough into creating blood stem cells that closely resemble those in the human body. And the discovery could soon lead to personalized treatments for children with leukemia and bone marrow failure disorders.
The research, led by Murdoch Children’s Research Institute (MCRI) and published in Nature Biotechnology, has overcome a major hurdle for producing human blood stem cells, which can create red cells, white blood cells and platelets, that closely match those in the human embryo.
MCRI Associate Professor Elizabeth Ng said the team had made a significant discovery in human blood stem cell development, paving the way for these lab-grown cells to be used in blood stem cell and bone marrow transplants.
The ability to take any cell from a patient, reprogram it into a stem cell and then turn these into specifically matched blood cells for transplantation will have a massive impact on these vulnerable patients’ lives.”
Elizabeth Ng, Associate Professor, MCRI
“Prior to this study, developing human blood stem cells in the lab that were capable of being transplanted into an animal model of bone marrow failure to make healthy blood cells had not been achievable. We have developed a workflow that has created transplantable blood stem cells that closely mirror those in the human embryo.
“Importantly, these human cells can be created at the scale and purity required for clinical use.”
In the study, immune deficient mice were injected with the lab engineered human blood stem cells. It found the blood stem cells became functional bone marrow at similar levels to that seen in umbilical cord blood cell transplants, a proven benchmark of success.
The research also found the lab grown stem cells could be frozen prior to being successfully transplanted into the mice. This mimicked the preservation process of donor blood stem cells before being transplanted into patients.
MCRI Professor Ed Stanley said the findings could lead to new treatment options for a range of blood disorders.
“Red blood cells are vital for oxygen transport and white blood cells are our immune defence, while platelets cause clotting to stop us bleeding,” he said. Understanding how these cells develop and function is like decoding a complex puzzle.
“By perfecting stem cell methods that mimic the development of the normal blood stem cells found in our bodies we can understand and develop personalized treatments for a range of blood diseases, including leukemias and bone marrow failure.”
MCRI Professor Andrew Elefanty said while a blood stem cell transplant was often a key part of lifesaving treatment for childhood blood disorders, not all children found an ideally matched donor.
“Mismatched donor immune cells from the transplant can attack the recipient’s own tissues, leading to severe illness or death,” he said.
“Developing personalized, patient-specific blood stem cells will prevent these complications, address donor shortages and, alongside genome editing, help correct underlying causes of blood diseases.”
Professor Elefanty said the next stage, likely in about five years with government funding, would be conducting a phase one clinical trial to test the safety of using these lab-grown blood cells in humans.
Riya was diagnosed at the age of 11 with aplastic anemia, a rare and serious blood disorder where the body stops producing enough new blood cells.
Riya’s family, including parents Sonali and Gaurav Mahajan, were in India at the time when she started to feel fatigued, rapidly lost weight and developed bruises on her thighs.
“We took Riya for a simple blood test, her very first one. But as soon as the results came in, we were told to rush her to the emergency department due to her being so low on platelets and red blood cells,” Sonali said.
“Riya was originally diagnosed with leukemia because the symptoms are very similar to aplastic anemia. When we got the eventual diagnosis, it was a complete shock and a condition we had never heard of before.
“The doctors told us she had bone marrow failure and she started needing regular platelet and blood transfusions to get her blood cell count up.”
Sonali said the family had already planned to return to Australia for Riya’s high school education, but the diagnosis fast tracked the return.
“Once they were able to stabilize her, we were given a two-day window to fly her to Australia to be hospitalized,” she said.
“As soon as we got off the plane we went straight to The Royal Children’s Hospital. Within days Riya started therapy, but she never really responded to the medications.
“Eventually a bone marrow transplant was recommended due to the amount of transfusions she was needing to have and the concerns around possible long-term complications.”
Sonali said over six months they struggled to find a perfectly matched donor and were losing hope. Despite being a half match, Sonali, following specialist advice, became her daughter’s donor.
Following the bone marrow transplant in June last year, Riya remained in hospital for three months where she had minor complications.
Without a perfect donor match, Riya’s platelet count took more time to return to normal, she required longer immunosuppressive therapy and was more susceptible to infections. Riya only recently started to be re-vaccinated.
“She had a weakened immune system for a long time after the transplant but thankfully once she was discharged from the hospital she hasn’t needed another transplant,” Sonali said.
Riya, 14, said after a painful few years she was now feeling well, took hydrotherapy classes and was glad to be back at school with her friends.
Sonali said the new MCRI-led research on blood stem cells was a remarkable achievement.
“This research will come as a blessing to so many families,” she said. The fact that one day there could be targeted treatments for children with leukaemia and bone marrow failure disorders is life changing.”
Prof Elefanty, Prof Stanley and Associate Professor Ng are also Principal Investigators at the Melbourne node of the Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), a global consortium, which aims to pave the way for future stem cell-based treatments.
Researchers from the University of Melbourne, Peter MacCallum Cancer Centre, University of California Los Angeles, University College London and the University of Birmingham also contributed to the findings.
Ng, E. S., et al. (2024). Long-term engrafting multilineage hematopoietic cells differentiated from human induced pluripotent stem cells. Nature Biotechnology. doi.org/10.1038/s41587-024-02360-7.

News
Nanocrystals Carrying Radioisotopes Offer New Hope for Cancer Treatment
The Science Scientists have developed tiny nanocrystal particles made up of isotopes of the elements lanthanum, vanadium, and oxygen for use in treating cancer. These crystals are smaller than many microbes and can carry isotopes of [...]
New Once-a-Week Shot Promises Life-Changing Relief for Parkinson’s Patients
A once-a-week shot from Australian scientists could spare people with Parkinson’s the grind of taking pills several times a day. The tiny, biodegradable gel sits under the skin and releases steady doses of two [...]
Weekly injectable drug offers hope for Parkinson’s patients
A new weekly injectable drug could transform the lives of more than eight million people living with Parkinson's disease, potentially replacing the need for multiple daily tablets. Scientists from the University of South Australia [...]
Most Plastic in the Ocean Is Invisible—And Deadly
Nanoplastics—particles smaller than a human hair—can pass through cell walls and enter the food web. New research suggest 27 million metric tons of nanoplastics are spread across just the top layer of the North [...]
Repurposed drugs could calm the immune system’s response to nanomedicine
An international study led by researchers at the University of Colorado Anschutz Medical Campus has identified a promising strategy to enhance the safety of nanomedicines, advanced therapies often used in cancer and vaccine treatments, [...]
Nano-Enhanced Hydrogel Strategies for Cartilage Repair
A recent article in Engineering describes the development of a protein-based nanocomposite hydrogel designed to deliver two therapeutic agents—dexamethasone (Dex) and kartogenin (KGN)—to support cartilage repair. The hydrogel is engineered to modulate immune responses and promote [...]
New Cancer Drug Blocks Tumors Without Debilitating Side Effects
A new drug targets RAS-PI3Kα pathways without harmful side effects. It was developed using high-performance computing and AI. A new cancer drug candidate, developed through a collaboration between Lawrence Livermore National Laboratory (LLNL), BridgeBio Oncology [...]
Scientists Are Pretty Close to Replicating the First Thing That Ever Lived
For 400 million years, a leading hypothesis claims, Earth was an “RNA World,” meaning that life must’ve first replicated from RNA before the arrival of proteins and DNA. Unfortunately, scientists have failed to find [...]
Why ‘Peniaphobia’ Is Exploding Among Young People (And Why We Should Be Concerned)
An insidious illness is taking hold among a growing proportion of young people. Little known to the general public, peniaphobia—the fear of becoming poor—is gaining ground among teens and young adults. Discover the causes [...]
Team finds flawed data in recent study relevant to coronavirus antiviral development
The COVID pandemic illustrated how urgently we need antiviral medications capable of treating coronavirus infections. To aid this effort, researchers quickly homed in on part of SARS-CoV-2's molecular structure known as the NiRAN domain—an [...]
Drug-Coated Neural Implants Reduce Immune Rejection
Summary: A new study shows that coating neural prosthetic implants with the anti-inflammatory drug dexamethasone helps reduce the body’s immune response and scar tissue formation. This strategy enhances the long-term performance and stability of electrodes [...]
Scientists discover cancer-fighting bacteria that ‘soak up’ forever chemicals in the body
A family of healthy bacteria may help 'soak up' toxic forever chemicals in the body, warding off their cancerous effects. Forever chemicals, also known as PFAS (per- and polyfluoroalkyl substances), are toxic chemicals that [...]
Johns Hopkins Researchers Uncover a New Way To Kill Cancer Cells
A new study reveals that blocking ribosomal RNA production rewires cancer cell behavior and could help treat genetically unstable tumors. Researchers at the Johns Hopkins Kimmel Cancer Center and the Department of Radiation Oncology and Molecular [...]
AI matches doctors in mapping lung tumors for radiation therapy
In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called [...]
Scientists Finally “See” Key Protein That Controls Inflammation
Researchers used advanced microscopy to uncover important protein structures. For the first time, two important protein structures in the human body are being visualized, thanks in part to cutting-edge technology at the University of [...]
AI tool detects 9 types of dementia from a single brain scan
Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single, widely available scan—a transformative [...]