In an article recently published in the journal Applied Surface Science, the researchers synthesized green fluorescent carbon dots (G-CDs) from 3,5-diaminobenzoic acid and citric acid. The as-prepared G-CDs were used to target the nucleolus and to carry exogenous DNA molecules into the nucleolus. In addition, the carbon dots (CDs) were used to monitor the levels of nitrite ions (NO2–) and pH in biological cells.
Role of Nucleolus, NO2– and pH in Living Cells
CDs are carbon nanomaterials considered quasispherical particles with a size of fewer than 10 nanometers. Due to their advantages, including outstanding photostability, superior photoluminescence, excellent biocompatibility low toxicity, and easy functionalization, CDs are extensively applied in biological sensing, cell imaging, gene delivery, catalysis, and fingerprints detection.
The nucleolus is located inside the nucleus and it is the site for processing ribosomal RNA (rRNA) transcripts, ribosomal DNA transcription by RNA polymerase I, and ribosome assembly. Monitoring the state of the nucleolus is critical for detecting malignant lesions and developing accurate treatment.
Although CDs were recently applied as fluorescent (FL) labeling reagents for nucleolus staining, their research application as nucleolus-targeted probes is practically unexplored.
Many human diseases are caused by genetic changes inside the nucleolus. Thus, transmitting normal genes with therapeutic efficacy into the nucleolus can exert a therapeutic role or correct gene defects. However, the internalization of naked genetic materials by target cells may be hampered due to phagocyte uptake, susceptibility to serum nuclease, or rapid renal clearance. To this end, various vectors were developed to introduce the gene into the nucleolus. However, these vectors have limitations like high toxicity and low transfection efficiency.
NO2– is used as a preservative in the food industry. Although a moderate amount of NO2– is beneficial to human health, excess presence could convert hemoglobin into methemoglobin in human blood, which may cause hypoxia and interact with secondary amines and amides present in the stomach to produce nitrosamine and may induce cancer and hypertension. Thus, detection of NO2– is critical for disease diagnosis. Similarly, pH plays a vital role in physiological processes, and irregular pH changes lead to various diseases. Measuring intracellular pH is also crucial for disease diagnosis.
G-CDs for Nucleolus Targeting, Gene Delivery, and Biosensing of NO2– and pH
In the present study, the researchers synthesized G-CDs from citric acid and 3,5-diaminobenzoic acid via a single-step hydrothermal method. As-prepared G-CDs showed excellent biocompatibility and low toxicity. The G-CDs were applied to the target nucleolus based on G-CD’s DNA-sensitive properties to carry the exogenous DNA into the nucleolus. Moreover, the G-CDs were used to monitor NO2– and pH in a biological cell.
Research Findings
Transmission electron microscope (TEM) images demonstrated G-CDs’ quasi-spherical structure with favorable dispersion and size distribution in the scope of 1-5 nanometers with an average size of 2.16 ± 0.52 nanometers. Atomic force microscopy revealed that G-CDs’ height range was between 5.2 and 5.1 nanometers.
Fourier transform infrared (FTIR) spectrum and X-ray diffraction patterns inferred the composition and functional groups. G-CD’s XRD pattern showed three characteristic peaks at 281.9, 396.9, and 528.8 electronvolts corresponding to C1s, N1s, and O1s, respectively.
The C1s spectrum illustrated four peaks corroborating the existence of the following bonds, carbon-carbon double (C=C, 284.8 electronvolts), carbon-nitrogen (C-N, 286 electronvolts), acetyl (O=C–C, 287.8 electronvolts) and carbonyl (C=O, 288.9 electronvolts). N1s spectrum decomposed into three peaks corresponding to carbon-nitrogen-carbon (C-N-C, 398.8 electronvolts) and nitrogen-hydrogen (N-H, 400.1 electronvolts). O1s spectrum also decomposed into three peaks of C=O (531.8 electronvolts) and carbon-hydroxyl (C-OH, 533.2 electronvolts), and ether (C-O-C, 533.9 electronvolts)
FTIR spectrum showed absorption bands for N–H and C–H at 2927.3 and 2579.3-centimeter inverse, respectively. The peak at 1690.9-centimeter inverse corroborated the existence of the C=O functional group, those at 1593.9 and 1464.4-centimeter inverse COO– group. Moreover, the peaks at 1394.7, 1334.8, 1210.5, and 1121.1-centimeter inverse correspond to C–H bending vibration, C-N stretching vibrations, O-H and C–O bond, respectively.
G-CD’s complex efficiency for DNA was investigated through an agarose gel electrophoresis assay by observing the movement of DNA. The results showed that free DNA had easy migration to the opposite end, while with the increasing weight ratio of G-CD to DNA, DNA binding with G-CD was gradually blocked, and complete blockage occurred when the ratio reached 50:1. Complete blockage in DNA migration confirms the effective loading of DNA in G-CDs.
Conclusion
To conclude, the researchers used 3,5-diaminobenzoic acid and citric acid as precursors to develop G-CDs via a single-step hydrothermal reaction. The as-prepared G-CDs served the purpose of staining nucleolus, carrying exogenous DNA into nucleolus, and visually monitoring pH and NO2– variations in living cells. Additionally, the team anticipated that the proposed G-CDs were biocompatible gene carriers with low toxicity. Thus, these CDs have good prospects in gene therapy that targets nucleolus.
News
Magnetic nanoparticles that successfully navigate complex blood vessels may be ready for clinical trials
Every year, 12 million people worldwide suffer a stroke; many die or are permanently impaired. Currently, drugs are administered to dissolve the thrombus that blocks the blood vessel. These drugs spread throughout the entire [...]
Reviving Exhausted T Cells Sparks Powerful Cancer Tumor Elimination
Scientists have discovered how tumors secretly drain the energy from T cells—the immune system’s main cancer fighters—and how blocking that process can bring them back to life. The team found that cancer cells use [...]
Very low LDL-cholesterol correlates to fewer heart problems after stroke
Brigham and Women's Hospital's TIMI Study Group reports that in patients with prior ischemic stroke, very low achieved LDL-cholesterol correlated with fewer major adverse cardiovascular events and fewer recurrent strokes, without an apparent increase [...]
“Great Unified Microscope” Reveals Hidden Micro and Nano Worlds Inside Living Cells
University of Tokyo researchers have created a powerful new microscope that captures both forward- and back-scattered light at once, letting scientists see everything from large cell structures to tiny nanoscale particles in a single shot. Researchers [...]
Breakthrough Alzheimer’s Drug Has a Hidden Problem
Researchers in Japan found that although the Alzheimer’s drug lecanemab successfully removes amyloid plaques from the brain, it does not restore the brain’s waste-clearing system within the first few months of treatment. The study suggests that [...]
Concerning New Research Reveals Colon Cancer Is Skyrocketing in Adults Under 50
Colorectal cancer is striking younger adults at alarming rates, driven by lifestyle and genetic factors. Colorectal cancer (CRC) develops when abnormal cells grow uncontrollably in the colon or rectum, forming tumors that can eventually [...]
Scientists Discover a Natural, Non-Addictive Way To Block Pain That Could Replace Opioids
Scientists have discovered that the body can naturally dull pain through its own localized “benzodiazepine-like” peptides. A groundbreaking study led by a University of Leeds scientist has unveiled new insights into how the body manages pain, [...]
GLP-1 Drugs Like Ozempic Work, but New Research Reveals a Major Catch
Three new Cochrane reviews find evidence that GLP-1 drugs lead to clinically meaningful weight loss, though industry-funded studies raise concerns. Three new reviews from Cochrane have found that GLP-1 medications can lead to significant [...]
How a Palm-Sized Laser Could Change Medicine and Manufacturing
Researchers have developed an innovative and versatile system designed for a new generation of short-pulse lasers. Lasers that produce extremely short bursts of light are known for their remarkable precision, making them indispensable tools [...]
New nanoparticles stimulate the immune system to attack ovarian tumors
Cancer immunotherapy, which uses drugs that stimulate the body’s immune cells to attack tumors, is a promising approach to treating many types of cancer. However, it doesn’t work well for some tumors, including ovarian [...]
New Drug Kills Cancer 20,000x More Effectively With No Detectable Side Effects
By restructuring a common chemotherapy drug, scientists increased its potency by 20,000 times. In a significant step forward for cancer therapy, researchers at Northwestern University have redesigned the molecular structure of a well-known chemotherapy drug, greatly [...]
Lipid nanoparticles discovered that can deliver mRNA directly into heart muscle cells
Cardiovascular disease continues to be the leading cause of death worldwide. But advances in heart-failure therapeutics have stalled, largely due to the difficulty of delivering treatments at the cellular level. Now, a UC Berkeley-led [...]
The basic mechanisms of visual attention emerged over 500 million years ago, study suggests
The brain does not need its sophisticated cortex to interpret the visual world. A new study published in PLOS Biology demonstrates that a much older structure, the superior colliculus, contains the necessary circuitry to perform the [...]
AI Is Overheating. This New Technology Could Be the Fix
Engineers have developed a passive evaporative cooling membrane that dramatically improves heat removal for electronics and data centers Engineers at the University of California San Diego have created an innovative cooling system designed to greatly enhance [...]
New nanomedicine wipes out leukemia in animal study
In a promising advance for cancer treatment, Northwestern University scientists have re-engineered the molecular structure of a common chemotherapy drug, making it dramatically more soluble and effective and less toxic. In the new study, [...]
Mystery Solved: Scientists Find Cause for Unexplained, Deadly Diseases
A study reveals that a protein called RPA is essential for maintaining chromosome stability by stimulating telomerase. New findings from the University of Wisconsin-Madison suggest that problems with a key protein that helps preserve chromosome stability [...]















