Researchers from Stanford Medicine have discovered that cancer cells-to-be accumulate a series of specific genetic changes in a predictable and sequential way years before they are identifiable as pre-malignancies. Many of these changes affect pathways that control cell division, structure, and internal messaging — leaving the cells poised to go bad long before any visible signs or symptoms occur.
The study is the first to exhaustively observe the natural evolution of the earliest stages of human cancers, starting with cells that have a single cancer-priming mutation and culminating with a panel of descendants harboring a galaxy of genetic abnormalities.
Identifying the first steps associated with future cancer development could not only facilitate earlier-than-ever diagnosis — when a deadly outcome is but a twinkle in a rogue cell’s eye — but may also highlight novel interventions that could stop the disease in its tracks, the researchers say.
Curtis is the senior author of the research, which was published on May 31 in Nature. The lead authors of the study are former postdoctoral scholar Kasper Karlsson, Ph.D., and visiting graduate student Moritz Przybilla.
Cells of nefarious beginnings
The research builds on previous work in Curtis’s laboratory indicating that some colon cancer cells are seemingly born to be bad — they acquire the ability to metastasize long before the disease is detectable.
“Our studies of established tumors showed us that early genomic alterations seem to dictate what happens later, and that many of these changes seem to happen before tumor formation,” Curtis said. “We wanted to know what happens at the very earliest stages. How does a cancer cell evolve, and is this evolutionary path repeatable? If we start with a given set of conditions, will we get the same result in every case?”
The researchers studied tiny, three-dimensional clumps of human stomach cells called gastric organoids. The cells were obtained from patients undergoing gastric bypass surgery to treat obesity. At the beginning of the study, the researchers nudged the cells toward cancers by disabling the production of a key cancer-associated protein called p53 that regulates when and how often a cell divides. Mutations in p53 are known to be an early event in many human cancers, and they trigger the accumulation of additional genetic changes including mutations and copy number alterations — in which repetitive regions of the genome are lost or gained during cell division.
Then they waited.
Every two weeks, for two years, Karlsson cataloged the genetic changes occurring in the dividing cells. When Karlsson and Przybilla analyzed the data they found that, although changes occurred randomly, those that conferred greater fitness gave their host cells an evolutionary advantage over other cells in the organoid. As the cells continued to divide and the cycle of mutation and competition repeated over many iterations, the researchers saw some common themes.
Predictable pathways
“There are reproducible patterns,” Curtis said. “Certain regions of the genome are consistently lost very early after the initial inactivation of p53. This was repeatedly seen in cells from independent experiments with the same donor and across donors. This indicates that these changes are cell-intrinsic, that they are hardwired into tumor evolution. At the same time, these cells and organoids appear mostly normal under the microscope. They have not yet progressed to a cancer.”
The researchers found that these early changes usually occur in biological pathways that control when and how often a cell divides, that interfere with a cell’s intricate internal signaling network coordinating the thousands of steps necessary to keep it running smoothly, or that control cell structure and polarity — its ability to know what is “up” and “down” and to situate itself with respect to neighboring cells to form a functioning tissue.
The researchers saw similar patterns occur again and again in cells from different donors. Like water flowing downhill into dry creek beds, the cells traced tried-and-true paths, gaining momentum with each new genetic change. Several of these changes mirror mutations previously observed in stomach cancer and in Barrett’s esophagus, a pre-cancerous condition arising from cells that line the colon and stomach.
“These changes occur in a stereotyped manner that suggests constraints in the system,” Curtis said. “There’s a degree of predictability at the genomic level and even more so at the transcriptomic level — in the biological pathways that are affected — that gives insights into how these cancers arise.”
Curtis and her colleagues plan to repeat the study in different cell types and initiate events other than p53 mutation.
“We’re trying to understand exactly what malignant transformation is,” Curtis said. “What does it mean to catch these cells in the act, about to topple over the edge? We’d like to repeat this study with other tissue types and initiating mutations so we can understand the early genetic events that occur in different organs. And we’d like to study the interplay between the host and the environment. Do inflammatory factors play a role in promoting progression? We know that it matters that the cells in these organoids are communicating with each other, and that is important to understanding progression and treatment response.”
Reference: “Deterministic evolution and stringent selection during preneoplasia” by Kasper Karlsson, Moritz J. Przybilla, Eran Kotler, Aziz Khan, Hang Xu, Kremena Karagyozova, Alexandra Sockell, Wing H. Wong, Katherine Liu, Amanda Mah, Yuan-Hung Lo, Bingxin Lu, Kathleen E. Houlahan, Zhicheng Ma, Carlos J. Suarez, Chris P. Barnes, Calvin J. Kuo and Christina Curtis, 31 May 2023, Nature.
DOI: 10.1038/s41586-023-06102-8
Researchers from Karolinska Institutet, the University College London, and the Chan Zuckerberg Biohub also contributed to the study.
The research was supported by the National Institutes of Health (grants DP1-CA238296 and U01-CA217851) and the Swedish Research Council.

News
Cold Sore Virus Linked to Alzheimer’s, Antivirals May Lower Risk
Summary: A large study suggests that symptomatic infection with herpes simplex virus 1 (HSV-1)—best known for causing cold sores—may significantly raise the risk of developing Alzheimer’s disease. Researchers found that people with HSV-1 were 80% [...]
Nanoparticle-Based Combination Therapy for Resistant Melanoma
A recent study published in Small addresses the persistent difficulty of treating refractory melanoma, an aggressive form of skin cancer that often does not respond to existing therapies. Although diagnostic tools and immunotherapies have improved in [...]
Our DNA May Evolve Much Faster Than Previously Thought
Rapidly mutating DNA regions were mapped using a multi-generational family and advanced sequencing tools. Understanding how human DNA changes over generations is crucial for estimating genetic disease risks and tracing our evolutionary history. However, some of [...]
AI therapy may help with mental health, but innovation should never outpace ethics
Mental health services around the world are stretched thinner than ever. Long wait times, barriers to accessing care and rising rates of depression and anxiety have made it harder for people to get timely help. As a result, governments and health care providers are [...]
Global life expectancy plunges as WHO warns of deepening health crisis Post-COVID
The World Health Organization (WHO) has sounded the alarm on the long-term health repercussions of the COVID-19 pandemic in its newly released World Health Statistics Report 2025. The report reveals a staggering decline in global [...]
Researchers map brain networks involved in word retrieval
How are we able to recall a word we want to say? This basic ability, called word retrieval, is often compromised in patients with brain damage. Interestingly, many patients who can name words they [...]
Melting Ice Is Changing the Color of the Ocean – Scientists Are Alarmed
Melting sea ice changes not only how much light enters the ocean, but also its color, disrupting marine photosynthesis and altering Arctic ecosystems in subtle but profound ways. As global warming causes sea ice in the [...]
Your Washing Machine Might Be Helping Antibiotic-Resistant Bacteria Spread
A new study reveals that biofilms in washing machines may contain potential pathogens and antibiotic resistance genes, posing possible risks for laundering healthcare workers’ uniforms at home. Washing healthcare uniforms at home could be [...]
Scientists Discover Hidden Cause of Alzheimer’s Hiding in Plain Sight
Researchers found the PHGDH gene directly causes Alzheimer’s and discovered a drug-like molecule, NCT-503, that may help treat the disease early by targeting the gene’s hidden function. A recent study has revealed that a gene previously [...]
How Brain Cells Talk: Inside the Complex Language of the Human Mind
Introduction The human brain contains nearly 86 billion neurons, constantly exchanging messages like an immense social media network, but neurons do not work alone – glial cells, neurotransmitters, receptors, and other molecules form a vast [...]
Oxford study reveals how COVID-19 vaccines prevent severe illness
A landmark study by scientists at the University of Oxford, has unveiled crucial insights into the way that COVID-19 vaccines mitigate severe illness in those who have been vaccinated. Despite the global success of [...]
Annual blood test could detect cancer earlier and save lives
A single blood test, designed to pick up chemical signals indicative of the presence of many different types of cancer, could potentially thwart progression to advanced disease while the malignancy is still at an early [...]
How the FDA opens the door to risky chemicals in America’s food supply
Lining the shelves of American supermarkets are food products with chemicals linked to health concerns. To a great extent, the FDA allows food companies to determine for themselves whether their ingredients and additives are [...]
Superbug crisis could get worse, killing nearly 40 million people by 2050
The number of lives lost around the world due to infections that are resistant to the medications intended to treat them could increase nearly 70% by 2050, a new study projects, further showing the [...]
How Can Nanomaterials Be Programmed for Different Applications?
Nanomaterials are no longer just small—they are becoming smart. Across fields like medicine, electronics, energy, and materials science, researchers are now programming nanomaterials to behave in intentional, responsive ways. These advanced materials are designed [...]
Microplastics Are Invading Our Arteries, and It Could Be Increasing Your Risk of Stroke
Higher levels of micronanoplastics were found in carotid artery plaque, especially in people with stroke symptoms, suggesting a potential new risk factor. People with plaque buildup in the arteries of their neck have been [...]