Researchers have uncovered how certain genetic mutations lead to unique spherical amyloid plaques in inherited forms of Alzheimer's, offering insights that could advance our understanding of the disease and improve therapeutic strategies.
An international collaboration led by RIKEN researchers has discovered how unusual spherical structures form in the brains of people with a mutation that causes a form of inherited Alzheimer's disease. This discovery could help better understand the mechanics of the debilitating neurodegenerative disease.
Why Alzheimer's disease strikes some people but not others is still largely mysterious. But in about one percent of cases that reason is clear—the person has inherited one of a handful of mutations that cause familial Alzheimer's.
"The inherited form of Alzheimer's disease can be caused by mutations to the gene that encodes for the amyloid precursor protein," explains Yoshitaka Ishii of the RIKEN Center for Biosystems Dynamics Research.
Amyloid Fibrils and Alzheimer's Research
Some of these mutations promote misfolding of the amyloid beta peptides into fibrillar aggregates, which are amyloid beta molecules clumped together in strings. Such amyloid beta fibrils are one of the hallmarks of all forms of Alzheimer's disease, although their structures vary according to the disease variety.
Discovering the structures of amyloid fibrils of amyloid-beta peptides could shed light on how the disease develops. It could help with developing ways to prevent or treat the condition.
"Amyloid fibrils are key drug targets for antibody therapies for Alzheimer's," says Ishii. "It's thus important to determine their structures."

Structural Insights From Arctic Mutation Analysis
Now, Ishii and co-workers have prepared samples of amyloid beta fibrils produced by the Arctic mutation—so called because it was first found in Scandinavia. They then used cryo-electron microscopy and solid-state nuclear magnetic resonance (NMR) to determine its structure.
"While Alzheimer's patients with the Arctic mutation exhibit similar symptoms as people with regular Alzheimer's, the pathological features are unique," says Ishii. "For example, a distinctive type of amyloid plaque called cotton wool plaque is often observed."
Cotton wool plaques are large, spherical plaques. "In Alzheimer's patients with the Arctic mutation, cotton wool plaques can be 200 micrometers in diameter, which is ten times larger than a typical plaque," explains Ishii. "But no one knew how these unique features were produced."
Potential Impact on Alzheimer's Therapy
Ishii's team's structural analysis has now revealed how cotton wool plaques may be formed by the mutation. "We've demonstrated that the unique W-shaped structure of amyloid fibrils produced by the Arctic mutation reproduces the major features of cotton wool plaques," says Ishii.
Ishii and his team hope this kind of structural analysis will help Alzheimer's research on two fronts.
"We believe that experimentally creating amyloid fibrils, which mimic the fibrils in various subtypes of Alzheimer's disease, will reveal the complex mechanisms of Alzheimer's," says Ishii. "This direction should also provide good potential targets for antibody or other therapies for the disorder."
Reference: "E22G Aβ40 fibril structure and kinetics illuminate how Aβ40 rather than Aβ42 triggers familial Alzheimer's" by Mohammad Jafar Tehrani, Isamu Matsuda, Atsushi Yamagata, Yu Kodama, Tatsuya Matsunaga, Mayuko Sato, Kiminori Toyooka, Dan McElheny, Naohiro Kobayashi, Mikako Shirouzu and Yoshitaka Ishii, 15 August 2024, Nature Communications.
DOI: 10.1038/s41467-024-51294-w
News
The Brain’s Strange Way of Computing Could Explain Consciousness
Consciousness may emerge not from code, but from the way living brains physically compute. Discussions about consciousness often stall between two deeply rooted viewpoints. One is computational functionalism, which holds that cognition can be [...]
First breathing ‘lung-on-chip’ developed using genetically identical cells
Researchers at the Francis Crick Institute and AlveoliX have developed the first human lung-on-chip model using stem cells taken from only one person. These chips simulate breathing motions and lung disease in an individual, [...]
Cell Membranes May Act Like Tiny Power Generators
Living cells may generate electricity through the natural motion of their membranes. These fast electrical signals could play a role in how cells communicate and sense their surroundings. Scientists have proposed a new theoretical [...]
This Viral RNA Structure Could Lead to a Universal Antiviral Drug
Researchers identify a shared RNA-protein interaction that could lead to broad-spectrum antiviral treatments for enteroviruses. A new study from the University of Maryland, Baltimore County (UMBC), published in Nature Communications, explains how enteroviruses begin reproducing [...]
New study suggests a way to rejuvenate the immune system
Stimulating the liver to produce some of the signals of the thymus can reverse age-related declines in T-cell populations and enhance response to vaccination. As people age, their immune system function declines. T cell [...]
Nerve Damage Can Disrupt Immunity Across the Entire Body
A single nerve injury can quietly reshape the immune system across the entire body. Preclinical research from McGill University suggests that nerve injuries may lead to long-lasting changes in the immune system, and these [...]
Fake Science Is Growing Faster Than Legitimate Research, New Study Warns
New research reveals organized networks linking paper mills, intermediaries, and compromised academic journals Organized scientific fraud is becoming increasingly common, ranging from fabricated research to the buying and selling of authorship and citations, according [...]
Scientists Unlock a New Way to Hear the Brain’s Hidden Language
Scientists can finally hear the brain’s quietest messages—unlocking the hidden code behind how neurons think, decide, and remember. Scientists have created a new protein that can capture the incoming chemical signals received by brain [...]
Does being infected or vaccinated first influence COVID-19 immunity?
A new study analyzing the immune response to COVID-19 in a Catalan cohort of health workers sheds light on an important question: does it matter whether a person was first infected or first vaccinated? [...]
We May Never Know if AI Is Conscious, Says Cambridge Philosopher
As claims about conscious AI grow louder, a Cambridge philosopher argues that we lack the evidence to know whether machines can truly be conscious, let alone morally significant. A philosopher at the University of [...]
AI Helped Scientists Stop a Virus With One Tiny Change
Using AI, researchers identified one tiny molecular interaction that viruses need to infect cells. Disrupting it stopped the virus before infection could begin. Washington State University scientists have uncovered a method to interfere with a key [...]
Deadly Hospital Fungus May Finally Have a Weakness
A deadly, drug-resistant hospital fungus may finally have a weakness—and scientists think they’ve found it. Researchers have identified a genetic process that could open the door to new treatments for a dangerous fungal infection [...]
Fever-Proof Bird Flu Variant Could Fuel the Next Pandemic
Bird flu viruses present a significant risk to humans because they can continue replicating at temperatures higher than a typical fever. Fever is one of the body’s main tools for slowing or stopping viral [...]
What could the future of nanoscience look like?
Society has a lot to thank for nanoscience. From improved health monitoring to reducing the size of electronics, scientists’ ability to delve deeper and better understand chemistry at the nanoscale has opened up numerous [...]
Scientists Melt Cancer’s Hidden “Power Hubs” and Stop Tumor Growth
Researchers discovered that in a rare kidney cancer, RNA builds droplet-like hubs that act as growth control centers inside tumor cells. By engineering a molecular switch to dissolve these hubs, they were able to halt cancer [...]
Platelet-inspired nanoparticles could improve treatment of inflammatory diseases
Scientists have developed platelet-inspired nanoparticles that deliver anti-inflammatory drugs directly to brain-computer interface implants, doubling their effectiveness. Scientists have found a way to improve the performance of brain-computer interface (BCI) electrodes by delivering anti-inflammatory drugs directly [...]















