The excess fluoroquinolones (FQs) discharged into the aquatic environment due to human activities must be removed cost-effectively. In an article published in the Journal of Cleaner Production, the authors fabricated an environment-friendly dealkaline lignin-grafted Fe3O4 nanoparticles (Fe3O4@DAL) for the removal of fluoroquinolone antibiotics.
Multiple interactions between Fe3O4@DAL and FQs facilitate their facile removal. The authors confirmed the nanoparticle’s superior adsorption and reusability and highlighted the application of degraded Fe3O4@DAL nanoparticles as fertilizers.
Nanoparticles in Removal of FQs
The presence of environmental contaminants (ECs) is a problem affecting the ecosystem and human health. Antibiotics are one of the alarming ECs leading to drug resistance and long-term indirect effects on the ecosystem. Among antibiotics, FQs are amphiphilic antibacterial drugs widely used in animal husbandry and agriculture. The excess FQs discharged into water bodies must be removed to avoid drug resistance and protect the environment.
Among various techniques employed to remove ECs from waterbodies, adsorption by adsorbents gained considerable attention due to its cost-efficiency, facile operation, high efficiency, and less secondary pollution.
Lignin is a natural polymer that is abundantly available in nature. It is an aromatic biopolymer with an amphiphilic molecular structure, hydrophobic three-dimensional network, and polar groups on the surface. Due to the advantages such as good stability, biodegradability, cost-efficiency, and renewability, lignin has a potential adsorbent of FQs in wastewater.
Magnetic nanoparticles combine the advantages of nanotechnology and magnetic separation. Under an external magnetic field, the magnetic nanoparticles can be separated easily without filtration or centrifugation. Additionally, these magnetic nanoparticles are cost-effective, recyclable, and can be applied to large-volume samples.
Fe3O4@DAL Nanoparticles
In the present work, the authors fabricated the amino-functionalized Fe3O4 nanoparticles (Fe3O4-NH2) using a solvothermal method. Later, they grafted dealkaline lignin (DAL) onto the Fe3O4-NH2 nanoparticles through an amide reaction at room temperature.
The authors characterized the as prepared Fe3O4@DAL and investigated their properties. They explored the adsorption mechanism using Fourier transform infrared spectroscopy (FTIR). The current work sets an example for natural polymer’s application in wastewater treatment, paving the way for environmental protection and energy conservation.
Fe3O4@DAL was used to remove FQs including lomefloxacin (LOM), pefloxacin (PEF), enrofloxacin (ENR), and difluoxacin (DIF) from water, through multiple interactions.
Research Findings
The results obtained from transmission electron microscopy (TEM) and X-Ray diffraction (XRD) studies of Fe3O4@DAL reveal the bright central area and dark periphery, suggesting the hollow structure of the nanoparticle. The selected area electron diffraction (SAED) pattern of nanoparticles confirmed its multi-crystalline nature with bright spots and diffuse circles. The nitrogen (N2) adsorption-desorption isotherm of Fe3O4@DAL revealed a type-IV isotherm indicating a mesoporous structure.
FTIR spectra revealed a broad band at 3266-centimeter inverse, indicating the presence of a hydroxyl (OH) functional group. The peaks for carboxyl (O-C=O), phenylic C=C, and benzene ring derivatives -CH were found at 1419, 1507, and 861-centimeter inverse, respectively. Moreover, the peaks at 1595 and 1548-centimeter inverse corresponds to carbonyl (C=O) stretching of amide I bond and N-H bending of amide II bond, respectively, corroborating the grafting of DAL on the surface of Fe3O4-NH2 via amide reaction.
Thermal curves of Fe3O4@DAL revealed excellent thermal stability due to the carbon elements. The nanoparticle showed two thermal degradation ranges due to loss of bound water molecules and thermolysis of organic components such as methoxy, hydroxyl, and carboxyl groups that get decomposed easily.
Based on the removal efficiency and uptake capacity (qe) values, the authors selected Fe3O4@DAL adsorbent concentration as 2.5 grams per liter to remove FQs. They also confirmed that the adsorbent has good tolerance to salt ions dispersed in water.
The maximum adsorption capacity (qmax) of Fe3O4@DAL towards LOM, PEF, DIF, and ENR antibiotics were analyzed, confirming an order of DIF > ENR > PEF > LOM.
Conclusion
In the present work, the authors prepared an eco-friendly and cost-effective magnetic lignin-based Fe3O4@DAL nanoadsorbent, using a facile amidation reaction to eliminate FQs from water bodies. The as-prepared Fe3O4@DAL nanoparticles facilitate the adsorption of four FQs.
The FQs adsorption on the nanoparticles was spontaneous, endothermic, and exhibited entropy augment behavior. The electrostatic force, hydrogen-bonding, and π-π interaction between nanoparticles and FQs lead to the excellent performance of Fe3O4@DAL.
The prepared nanoparticles catalyze the oxidative degradation of FQs through pseudo-second order reaction through charge transfer, exhibiting reusability and stability. The degraded nanoparticles are applied as fertilizers in forestry and agriculture.
The life cycle assessment (LCA) revealed that Fe3O4@DAL has minimal effect on the environment throughout its life cycle. The authors anticipate that future studies will explore the composite photocatalyst strategy on the Fe3O4@DAL nanomaterial in combination with green energy to catalyze the degradation of antibiotics.

News
How to prevent chronic inflammation from zombie-like cells that accumulate with age
In humans and other multicellular organisms, cells multiply. This defining feature allows embryos to grow into adulthood, and enables the healing of the many bumps, bruises and scrapes along the way. Certain factors can [...]
Breakthrough for long Covid patients who lost sense of smell
A breakthrough nasal surgery has restored the sense of smell for a dozen long Covid patients. Experts at University College London Hospitals NHS Foundation Trust successfully employed a technique typically used for correcting blocked nasal passages, [...]
Scientists Invent Plastic That Can Dissolve In Seawater In Just A Few Hours
Plastic waste and pollution in the sea have been among the most serious environmental problems for decades, causing immense damage to marine life and ecosystems. However, a breakthrough discovery may offer a game-changing solution. [...]
Muscles from the 3D printer
Swiss researchers have developed a method for printing artificial muscles out of silicone. In the future, these could be used on both humans and robots. Swiss researchers have succeeded in printing artificial muscles out [...]
Beneficial genetic changes observed in regular blood donors
Researchers at the Francis Crick Institute have identified genetic changes in blood stem cells from frequent blood donors that support the production of new, non-cancerous cells. Understanding the differences in the mutations that accumulate [...]
Shocking Amounts of Microplastics in the Brain – It Could Be Increasing Our Risk of Dementia
The brain has higher concentrations of plastic particles compared to other organs, with increased levels found in dementia patients. In a comprehensive commentary published in Brain Medicine, researchers highlight alarming new evidence of microplastic accumulation [...]
Baffling Scientists for Centuries: New Study Unravels Mystery of Static Electricity
ISTA physicists demonstrate that contact electrification depends on the contact history of materials. For centuries, static electricity has intrigued and perplexed scientists. Now, researchers from the Waitukaitis group at the Institute of Science and [...]
Tumor “Stickiness” – Scientists Develop Potential New Way To Predict Cancer’s Spread
UC San Diego researchers have developed a device that predicts breast cancer aggressiveness by measuring tumor cell adhesion. Weakly adherent cells indicate a higher risk of metastasis, especially in early-stage DCIS. This innovation could [...]
Scientists Just Watched Atoms Move for the First Time Using AI
Scientists have developed a groundbreaking AI-driven technique that reveals the hidden movements of nanoparticles, essential in materials science, pharmaceuticals, and electronics. By integrating artificial intelligence with electron microscopy, researchers can now visualize atomic-level changes that were [...]
Scientists Sound Alarm: “Safe” Antibiotic Has Led to an Almost Untreatable Superbug
A recent study reveals that an antibiotic used for liver disease patients may increase their risk of contracting a dangerous superbug. An international team of researchers has discovered that rifaximin, a commonly prescribed antibiotic [...]
Scientists Discover Natural Compound That Stops Cancer Progression
A discovery led by OHSU was made possible by years of study conducted by University of Portland undergraduates. Scientists have discovered a natural compound that can halt a key process involved in the progression [...]
Scientists Just Discovered an RNA That Repairs DNA Damage – And It’s a Game-Changer
Our DNA is constantly under threat — from cell division errors to external factors like sunlight and smoking. Fortunately, cells have intricate repair mechanisms to counteract this damage. Scientists have uncovered a surprising role played by [...]
What Scientists Just Discovered About COVID-19’s Hidden Death Toll
COVID-19 didn’t just claim lives directly—it reshaped mortality patterns worldwide. A major international study found that life expectancy plummeted across most of the 24 analyzed countries, with additional deaths from cardiovascular disease, substance abuse, and mental [...]
Self-Propelled Nanoparticles Improve Immunotherapy for Non-Invasive Bladder Cancer
A study led by Pohang University of Science and Technology (POSTECH) and the Institute for Bioengineering of Catalonia (IBEC) in South Korea details the creation of urea-powered nanomotors that enhance immunotherapy for bladder cancer. The nanomotors [...]
Scientists Develop New System That Produces Drinking Water From Thin Air
UT Austin researchers have developed a biodegradable, biomass-based hydrogel that efficiently extracts drinkable water from the air, offering a scalable, sustainable solution for water access in off-grid communities, emergency relief, and agriculture. Discarded food [...]
AI Unveils Hidden Nanoparticles – A Breakthrough in Early Disease Detection
Deep Nanometry (DNM) is an innovative technique combining high-speed optical detection with AI-driven noise reduction, allowing researchers to find rare nanoparticles like extracellular vesicles (EVs). Since EVs play a role in disease detection, DNM [...]