Molecular biology’s central dogma posits a simple recipe for the construction of the human body: a DNA blueprint is transcribed into an RNA message, and the RNA message is translated into the proteins that make you. Translating the mRNA message is a bit like an assembly line.
The magnitude of protein production varies wildly by the protein, the type of cell in which it is produced, and what that cell is doing at that moment in time. A type of protein notable for incredibly high production is the antibody family, which must be rapidly generated in high quantities to fight infection.
The work of protein production is stressful for cells, and the antibody-producing B cells are known to undergo metabolic shifts to support antibody secretion.
Sophie Giguere, an immunology student at Harvard Medical School who recently completed her Ph.D. in the Batista lab at the Ragon Institute, had another question: in simple organisms, and for certain proteins in more complex, multi-cellular organisms, high levels of production are associated with unusual patterns of codon use. How do antibodies compare?
Dr. Giguere’s interest in immunology, and in the antibody-producing B cells, was driven by her appreciation for the role vaccines play in public health. It was the intellectual ferment of Cambridge’s technology hub, however, that drove her interest in codon bias in immune cells. “My really good friend from undergrad was working on alternate genetic codes…. At the same time, I had just heard a lecture on T cell differentiation and started wondering if codon bias could vary across different cell states.”
Her bioinformatic dive revealed a peculiar quirk of antibody sequences: they frequently use codons without a “matching” tRNA in the genome.
The problem of codons with no apparent decoding mechanism was an early puzzle in genetics, and Francis Crick, one of the discoverers of the DNA helix, proposed quite early that this could be solved by tRNA “wobble”—a capacity to translate multiple codons that is now a well-known quirk of genetics.
Which codons tRNAs can translate are affected by chemical modifications to those tRNAs; Dr. Giguere found one particular modification known as a “super-wobbler,” inosine (I34), at higher rates in plasma cells—which produce high levels of antibodies.
There are 64 possible codon combinations and only 20 amino acids are used in human proteins. Since multiple codons can encode the same amino acid, Dr. Giguere genetically engineered cell lines to replace codons that require I34 with codons that do not, but encode the same amino acid—editing the instructions but making the same protein.
She found that antibody-producing cells were more efficient than non-antibody-producing cells when it came to translating I34-dependent codons. When she looked at mice with B cell receptors (essentially membrane-bound antibodies) that were identical as proteins but encoded differently, Dr. Giguere observed that B cells expressing more I34-dependant receptors seemed to be more likely to survive.
“It was surprising to me; the most common codons used in human antibody heavy chains, over and over, were ones with no corresponding tRNA gene in the genome,” says Prof. Facundo D. Batista, Ph.D., Associate and Scientific Director of the Ragon Institute and Dr. Giguere’s Ph.D. mentor. “I have worked on B cell receptors my entire career, and I had never considered this angle. Every immunologist I spoke to shared a similar reaction.”
The practical implications are immense: antibody production for laboratory and therapeutic use is an enormous industry, and antibodies are the key mediators of vaccine efficacy. Prof. Batista says, “I spend a lot of time working on which antibodies we want rationally designed vaccines to elicit: now, I will consider how those antibodies are encoded.”
The work is published in the journal Science.
More information: Sophie Giguère et al, Antibody production relies on the tRNA inosine wobble modification to meet biased codon demand, Science (2024). DOI: 10.1126/science.adi1763
News
Nanomedicine in 2026: Experts Predict the Year Ahead
Progress in nanomedicine is almost as fast as the science is small. Over the last year, we've seen an abundance of headlines covering medical R&D at the nanoscale: polymer-coated nanoparticles targeting ovarian cancer, Albumin recruiting nanoparticles for [...]
Lipid nanoparticles could unlock access for millions of autoimmune patients
Capstan Therapeutics scientists demonstrate that lipid nanoparticles can engineer CAR T cells within the body without laboratory cell manufacturing and ex vivo expansion. The method using targeted lipid nanoparticles (tLNPs) is designed to deliver [...]
The Brain’s Strange Way of Computing Could Explain Consciousness
Consciousness may emerge not from code, but from the way living brains physically compute. Discussions about consciousness often stall between two deeply rooted viewpoints. One is computational functionalism, which holds that cognition can be [...]
First breathing ‘lung-on-chip’ developed using genetically identical cells
Researchers at the Francis Crick Institute and AlveoliX have developed the first human lung-on-chip model using stem cells taken from only one person. These chips simulate breathing motions and lung disease in an individual, [...]
Cell Membranes May Act Like Tiny Power Generators
Living cells may generate electricity through the natural motion of their membranes. These fast electrical signals could play a role in how cells communicate and sense their surroundings. Scientists have proposed a new theoretical [...]
This Viral RNA Structure Could Lead to a Universal Antiviral Drug
Researchers identify a shared RNA-protein interaction that could lead to broad-spectrum antiviral treatments for enteroviruses. A new study from the University of Maryland, Baltimore County (UMBC), published in Nature Communications, explains how enteroviruses begin reproducing [...]
New study suggests a way to rejuvenate the immune system
Stimulating the liver to produce some of the signals of the thymus can reverse age-related declines in T-cell populations and enhance response to vaccination. As people age, their immune system function declines. T cell [...]
Nerve Damage Can Disrupt Immunity Across the Entire Body
A single nerve injury can quietly reshape the immune system across the entire body. Preclinical research from McGill University suggests that nerve injuries may lead to long-lasting changes in the immune system, and these [...]
Fake Science Is Growing Faster Than Legitimate Research, New Study Warns
New research reveals organized networks linking paper mills, intermediaries, and compromised academic journals Organized scientific fraud is becoming increasingly common, ranging from fabricated research to the buying and selling of authorship and citations, according [...]
Scientists Unlock a New Way to Hear the Brain’s Hidden Language
Scientists can finally hear the brain’s quietest messages—unlocking the hidden code behind how neurons think, decide, and remember. Scientists have created a new protein that can capture the incoming chemical signals received by brain [...]
Does being infected or vaccinated first influence COVID-19 immunity?
A new study analyzing the immune response to COVID-19 in a Catalan cohort of health workers sheds light on an important question: does it matter whether a person was first infected or first vaccinated? [...]
We May Never Know if AI Is Conscious, Says Cambridge Philosopher
As claims about conscious AI grow louder, a Cambridge philosopher argues that we lack the evidence to know whether machines can truly be conscious, let alone morally significant. A philosopher at the University of [...]
AI Helped Scientists Stop a Virus With One Tiny Change
Using AI, researchers identified one tiny molecular interaction that viruses need to infect cells. Disrupting it stopped the virus before infection could begin. Washington State University scientists have uncovered a method to interfere with a key [...]
Deadly Hospital Fungus May Finally Have a Weakness
A deadly, drug-resistant hospital fungus may finally have a weakness—and scientists think they’ve found it. Researchers have identified a genetic process that could open the door to new treatments for a dangerous fungal infection [...]
Fever-Proof Bird Flu Variant Could Fuel the Next Pandemic
Bird flu viruses present a significant risk to humans because they can continue replicating at temperatures higher than a typical fever. Fever is one of the body’s main tools for slowing or stopping viral [...]
What could the future of nanoscience look like?
Society has a lot to thank for nanoscience. From improved health monitoring to reducing the size of electronics, scientists’ ability to delve deeper and better understand chemistry at the nanoscale has opened up numerous [...]















