Something as simple as the motion of water drops on surfaces should actually be understood – one would think. In fact there are still numerous unanswered questions about the forces acting on a sliding droplet. | |
A team of researchers from the Max Planck Institute for Polymer Research in collaboration with colleagues from TU Darmstadt has now discovered: In addition to surface energy and viscous friction within the droplet, electrostatics also play a significant role. | |
The results were recently published in the journal Nature Physics (“Spontaneous charging affects the motion of sliding drops”). |
Raindrops hit the car window and the wind pushes the drops to the side. Even today, no one has been able to precisely predict how the drops move on the windshield. Yet such an understanding is important in numerous areas, such as autonomous driving: For example, cameras installed in the windshield are supposed to keep an eye on the road and the traffic situation – for this, the surface of the windshield must be designed in such a way that the drops are completely blown down by the airstream and the view remains clear even in the rain. Other examples with the opposite sign are applications where drops need to stick to surfaces, such as spray paint or pesticides. | |
“Until now, it was assumed that the surface coating was responsible for how the droplet moves on a surface – that is, the first few molecular layers,” says Prof. Hans-Jürgen Butt, who is director of the “Physics of Interfaces” department at the Max Planck Institute for Polymer Research. | |
For example, it depends on the surface whether a spherical or a flat droplet shape is formed. If the drop likes the surface, it presses itself flat onto it to make as much contact as possible. If it does not like the surface, as in the case of the well-known lotus effect, it curls up. It was also clear that when a droplet moves, viscous friction – i.e. friction between the individual water molecules – occurs within the droplet, which also influences its movement. | |
Electrostatics cause differences in velocity |
|
The team of researchers at the MPI for Polymer Research found that neither capillary nor viscoelastic forces can explain the differences in the speed at which droplets move across different surfaces. Questions were raised in particular by the fact that the droplets run at different speeds on different substrates – even if these substrates have an identical surface coating, where no differences would be expected. | |
The researchers therefore first introduced a mysterious “extra force.” To track it down, Xiaomei Li, a Ph.D. student in Hans-Jürgen Butt’s department, organized a drop race. “I filmed the drops on different substrates, extracted velocity and acceleration profiles from their motion, calculated out the forces that were already known to calculate the force that we had not yet had a look at,” she explains. | |
The astonishing result: the calculated force agrees with an electrostatic force that the researchers first described in a model a few years ago. “By comparing the experimental results with this numerical model, we can explain previously confusing droplet trajectories,” says Jun.-Prof. Stefan Weber, a group leader in Butt’s department. | |
If previously neutral droplets slide over an insulator, they can become electrically charged: So electrostatics plays a significant role there. On an electrically conductive substrate, on the other hand, the droplet immediately releases its charge back to the substrate. | |
“The electrostatic force, which no one had previously considered, therefore has a major influence: it must be taken into account for water, aqueous electrolytes and ethylene glycol on all hydrophobic surfaces tested,” Weber summarizes. | |
These results will improve the control of droplet motion in many applications ranging from printing to microfluidics or water management to power generation via droplet-based mini-generators. |

News
Team finds flawed data in recent study relevant to coronavirus antiviral development
The COVID pandemic illustrated how urgently we need antiviral medications capable of treating coronavirus infections. To aid this effort, researchers quickly homed in on part of SARS-CoV-2's molecular structure known as the NiRAN domain—an [...]
Drug-Coated Neural Implants Reduce Immune Rejection
Summary: A new study shows that coating neural prosthetic implants with the anti-inflammatory drug dexamethasone helps reduce the body’s immune response and scar tissue formation. This strategy enhances the long-term performance and stability of electrodes [...]
Scientists discover cancer-fighting bacteria that ‘soak up’ forever chemicals in the body
A family of healthy bacteria may help 'soak up' toxic forever chemicals in the body, warding off their cancerous effects. Forever chemicals, also known as PFAS (per- and polyfluoroalkyl substances), are toxic chemicals that [...]
Johns Hopkins Researchers Uncover a New Way To Kill Cancer Cells
A new study reveals that blocking ribosomal RNA production rewires cancer cell behavior and could help treat genetically unstable tumors. Researchers at the Johns Hopkins Kimmel Cancer Center and the Department of Radiation Oncology and Molecular [...]
AI matches doctors in mapping lung tumors for radiation therapy
In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called [...]
Scientists Finally “See” Key Protein That Controls Inflammation
Researchers used advanced microscopy to uncover important protein structures. For the first time, two important protein structures in the human body are being visualized, thanks in part to cutting-edge technology at the University of [...]
AI tool detects 9 types of dementia from a single brain scan
Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single, widely available scan—a transformative [...]
Is plastic packaging putting more than just food on your plate?
New research reveals that common food packaging and utensils can shed microscopic plastics into our food, prompting urgent calls for stricter testing and updated regulations to protect public health. Beyond microplastics: The analysis intentionally [...]
Aging Spreads Through the Bloodstream
Summary: New research reveals that aging isn’t just a local cellular process—it can spread throughout the body via the bloodstream. A redox-sensitive protein called ReHMGB1, secreted by senescent cells, was found to trigger aging features [...]
AI and nanomedicine find rare biomarkers for prostrate cancer and atherosclerosis
Imagine a stadium packed with 75,000 fans, all wearing green and white jerseys—except one person in a solid green shirt. Finding that person would be tough. That's how hard it is for scientists to [...]
Are Pesticides Breeding the Next Pandemic? Experts Warn of Fungal Superbugs
Fungicides used in agriculture have been linked to an increase in resistance to antifungal drugs in both humans and animals. Fungal infections are on the rise, and two UC Davis infectious disease experts, Dr. George Thompson [...]
Scientists Crack the 500-Million-Year-Old Code That Controls Your Immune System
A collaborative team from Penn Medicine and Penn Engineering has uncovered the mathematical principles behind a 500-million-year-old protein network that determines whether foreign materials are recognized as friend or foe. How does your body [...]
Team discovers how tiny parts of cells stay organized, new insights for blocking cancer growth
A team of international researchers led by scientists at City of Hope provides the most thorough account yet of an elusive target for cancer treatment. Published in Science Advances, the study suggests a complex signaling [...]
Nanomaterials in Ophthalmology: A Review
Eye diseases are becoming more common. In 2020, over 250 million people had mild vision problems, and 295 million experienced moderate to severe ocular conditions. In response, researchers are turning to nanotechnology and nanomaterials—tools that are transforming [...]
Natural Plant Extract Removes up to 90% of Microplastics From Water
Researchers found that natural polymers derived from okra and fenugreek are highly effective at removing microplastics from water. The same sticky substances that make okra slimy and give fenugreek its gel-like texture could help [...]
Instant coffee may damage your eyes, genetic study finds
A new genetic study shows that just one extra cup of instant coffee a day could significantly increase your risk of developing dry AMD, shedding fresh light on how our daily beverage choices may [...]