Terahertz radiation, whose wavelengths lie between those of microwaves and visible light, can penetrate many nonmetallic materials and detect signatures of certain molecules. These handy qualities could lend themselves to a wide array of applications, including airport security scanning, industrial quality control, astrophysical observations, nondestructive characterization of materials, and wireless communications with higher bandwidth than current cellphone bands.
Now, researchers at MIT, the University of Minnesota, and Samsung have developed a new kind of camera that can detect terahertz pulses rapidly, with high sensitivity, and at room temperature and pressure. What’s more, it can simultaneously capture information about the orientation, or “polarization,” of the waves in real-time, which existing devices cannot. This information can be used to characterize materials that have asymmetrical molecules or to determine the surface topography of materials.
The new system uses particles called quantum dots, which, it has recently been found, can emit visible light when stimulated by terahertz waves. The visible light can then be recorded by a device that is similar to a standard electronic camera’s detector and can even be seen with the naked eye. The device is described in a paper published November 4 in the journal Nature Nanotechnology by MIT doctoral student Jiaojian Shi, professor of chemistry Keith Nelson, and 12 others.
The team produced two different devices that can operate at room temperature: One uses the quantum dot’s ability to convert terahertz pulses to visible light, enabling the device to produce images of materials; the other produces images showing the polarization state of the terahertz waves.
The new “camera” consists of several layers, made with standard manufacturing techniques like those used for microchips. An array of nanoscale parallel lines of gold, separated by narrow slits, lies on the substrate; above that is a layer of the light-emitting quantum dot material; and above that is a CMOS chip used to form an image. The polarization detector, called a polarimeter, uses a similar structure, but with nanoscale ring-shaped slits, which allows it to detect the polarization of the incoming beams.
The researchers demonstrated the capabilities of the detector by taking terahertz-illuminated pictures of some of the structures used in their devices, such as the nano-spaced gold lines and the ring-shaped slits used for the polarized detector, proving the sensitivity and resolution of the system.
Developing a practical terahertz camera requires a component that produces terahertz waves to illuminate a subject, and another that detects them. On the latter point, current terahertz detectors are either very slow, because they rely on detecting heat generated by the waves striking a material, and heat propagates slowly, or they use photodetectors that are relatively fast, but have very low sensitivity. In addition, until now, most approaches have required a whole array of terahertz detectors, each producing one pixel of the image. “Each one is quite expensive,” Shi says, so “once they start to make a camera, the cost of the detectors starts to scale up really, really quickly.”
While the researchers say they have cracked the terahertz pulse detection problem with their new work, the lack of good sources remains—and is being worked on by many research groups around the world. The terahertz source used in the new study is a large and cumbersome array of lasers and optical devices that cannot easily be scaled to practical applications, Nelson says, but new sources based microelectronic techniques are well under development.
“I think that’s really the rate-limiting step: Can you make the [terahertz] signals in a facile way that isn’t expensive?” he says. “But there’s no question that’s coming.”
Sang-Hyun Oh, a co-author of the paper and a McKnight Professor of Electrical and Computer Engineering at the University of Minnesota, adds that while present versions of terahertz cameras cost tens of thousands of dollars, the inexpensive nature of CMOS cameras used for this system makes it “a big step forward toward building a practical terahertz camera.” The potential for commercialization led Samsung, which makes CMOS camera chips and quantum dot devices, to collaborate on this research.
Traditional detectors for such wavelengths operate at liquid helium temperatures (-452 degrees Fahrenheit), Nelson says, which is necessary to pick out the extremely low energy of the terahertz photons from background noise. The fact that this new device can detect and produce images of these wavelengths with a conventional visible-light camera at room temperature has been unexpected to those working in the terahertz field. “People are like, ‘What?’ It’s kind of unheard of, and people get very surprised,” says Oh.
There are many avenues for further improving the sensitivity of the new camera, the researchers say, including further miniaturization of the components and ways of protecting the quantum dots. Even at the present detection levels, the device could have some potential applications, they say.
In terms of commercialization potential for the new device, Nelson says that quantum dots are now inexpensive and readily available, currently being used in consumer products such as television screens. The actual fabrication of the camera devices is more complex, he says, but is also based on existing microelectronics technology. In fact, unlike existing terahertz detectors, the entire terahertz camera chip can be manufactured using today’s standard microchip production systems, meaning that ultimately mass production of the devices should be possible and relatively inexpensive.
Already, even though the camera system is still far from commercialization, researchers at MIT have been using the new lab device when they need a quick way to detect terahertz radiation. “We don’t own one of those expensive cameras,” Nelson says, “but we have lots of these little devices. People will just stick one of these in the beam and look by eye at the visible light emission so they know when the terahertz beam is on. … People found it really handy.”
While terahertz waves could in principle be used to detect some astrophysical phenomena, those sources would be extremely weak and the new device is not able to capture such weak signals, Nelson says, although the team is working on improving its sensitivity. “The next generation lies in making everything smaller, so it will be much more sensitive,” he says.
News
According to Researchers, Your Breathing Patterns Could Hold the Key to Better Memory
Breathing synchronizes brain waves that support memory consolidation. A new study from Northwestern Medicine reports that, much like a conductor harmonizes various instruments in an orchestra to create a symphony, breathing synchronizes hippocampal brain waves to [...]
The Hidden Culprit Behind Alzheimer’s Revealed: Microglia Under the Microscope
Researchers at the CUNY Graduate Center have made a groundbreaking discovery in Alzheimer’s disease research, identifying a critical link between cellular stress in the brain and disease progression. Their study focuses on microglia, the brain’s immune [...]
“Mirror Bacteria” Warning: A New Kind of Life Could Pose a Global Threat
Mirror life, a concept involving synthetic organisms with reversed molecular structures, carries significant risks despite its potential for medical advancements. Experts warn that mirror bacteria could escape natural biological controls, potentially evolving to exploit [...]
Lingering Viral Fragments: The Hidden Cause of Long COVID
Long COVID, affecting 5-10% of COVID-19 patients, might be caused by the enduring presence of the virus in the body. Research suggests that viral fragments, possibly live, linger and lead to symptoms. Addressing this involves antiviral treatments, enhanced [...]
Hidden Scars: How COVID Lockdowns Altered Teen Brains Forever
Research from the University of Washington revealed that COVID-19 lockdowns led to accelerated cortical thinning in adolescents, impacting brain development significantly. This effect was more pronounced in females than males, raising concerns about long-term brain health. The study [...]
Simple Blood Test To Detect Dementia Before Symptoms Appear
UCLA researchers have identified placental growth factor (PlGF) as a potential blood biomarker for early detection of cognitive impairment and dementia. High PlGF levels correlate with increased vascular permeability, suggesting its role in the development [...]
Investing Goldman Sachs asks ‘Is curing patients a sustainable business model?’
Goldman Sachs analysts attempted to address a touchy subject for biotech companies, especially those involved in the pioneering “gene therapy” treatment: cures could be bad for business in the long run. “Is curing patients [...]
The risks of reversed chirality: Study highlights dangers of mirror organisms
A groundbreaking study evaluates the feasibility, risks, and ethical considerations of creating mirror bacteria with reversed chirality, highlighting potential threats to health and ecosystems. In a recent study published in Science, a team of researchers [...]
Alarming Mutation in H5N1 Virus Raises Pandemic Red Flags
NIH-funded study concludes that the risk of human infection remains low A recent study published in Science and funded by the National Institutes of Health (NIH) has found that a single alteration in a protein on the surface [...]
Scientists Discover Genetic Changes Linked to Autism, Schizophrenia
The Tbx1 gene influences brain volume and social behavior in autism and schizophrenia, with its deficiency linked to amygdala shrinkage and impaired social incentive evaluation. A study published in Molecular Psychiatry has linked changes in brain [...]
How much permafrost will melt this century, and where will its carbon go?
Among the many things global warming will be melting this century—sea ice, land glaciers and tourist businesses in seaside towns across the world—is permafrost. Lying underneath 15% of the northern hemisphere, permafrost consists of [...]
A Physics Discovery So Strange It’s Changing Quantum Theory
MIT physicists surprised to discover electrons in pentalayer graphene can exhibit fractional charge. New theoretical research from MIT physicists explains how it could work, suggesting that electron interactions in confined two-dimensional spaces lead to novel quantum states, [...]
Inside the Nano-Universe: New 3D X-Ray Imaging Transforms Material Science
A cutting-edge X-ray method reveals the 3D orientation of nanoscale material structures, offering fresh insights into their functionality. Researchers at the Swiss Light Source (SLS) have developed a groundbreaking technique called X-ray linear dichroic orientation tomography [...]
X-chromosome study reveals hidden genetic links to Alzheimer’s disease
Despite decades of research, the X-chromosome’s impact on Alzheimer’s was largely ignored until now. Explore how seven newly discovered genetic loci could revolutionize our understanding of the disease. Conventional investigations of the genetic contributors [...]
The Unresolved Puzzle of Long COVID: 30% of Young People Still Suffer After Two Years
A UCL study found that 70% of young people with long Covid recovered within 24 months, but recovery was less likely among older teenagers, females, and those from deprived backgrounds. Researchers emphasized the need [...]
Needle-Free: New Nano-Vaccine Effective Against All COVID-19 Variants
A new nano-vaccine developed by TAU and the University of Lisbon offers a needle-free, room-temperature-storable solution against COVID-19, targeting all key variants effectively. Professor Ronit Satchi-Fainaro’s lab at Tel Aviv University’s Faculty of Medical and [...]