Since its inception, chemotherapy has proven to be a valuable tool in treating many kinds of cancers, but it has a significant drawback. In addition to killing cancer cells, it can also destroy healthy cells like the ones in hair follicles, causing baldness, and those that line the stomach, producing nausea.
Now, scientists at the California Institute of Technology (Caltech) may have a better solution: genetically engineered, sound-controlled bacteria that seek and destroy cancer cells. In a new paper that was published in the journal Nature Communications, scientists from the lab of Mikhail Shapiro, professor of chemical engineering and Howard Hughes Medical Institute investigator, show how they have developed a specialized strain of the bacteria Escherichia coli (E. coli) that seeks out and infiltrates cancerous tumors when injected into a patient's body. Once the bacteria have reached their destination, pulses of ultrasound can trigger them to produce anti-cancer drugs.
"The goal of this technology is to take advantage of the ability of engineered probiotics to infiltrate tumors, while using ultrasound to activate them to release potent drugs inside the tumor," professor Shapiro says.
To transform the bacteria into a useful tool for treating cancer, the research team engineered them to contain two new sets of genes. One set of genes is for producing nanobodies, which are therapeutic proteins that turn off the signals a tumor uses to prevent an anti-tumor response by the immune system. The presence of these nanobodies allows the immune system to attack the tumor. The other set of genes act like a thermal switch for turning the nanobody genes on when the bacteria reaches a specific temperature.
By inserting the temperature-dependent and nanobody genes, the team was able to create strains of bacteria that only produced the tumor-suppressing nanobodies when warmed to a trigger temperature of 42-43 degrees Celsius (107.6-109.4 degrees Fahrenheit). Since normal human body temperature is 37 degrees Celsius (98.6 degrees Fahrenheit), these strains do not begin producing their anti-tumor nanobodies when injected into a person. Instead, they quietly grow inside the tumors until an outside source heats them to their trigger temperature.
But how do you heat bacteria that are located in one specific location, potentially deep inside the body where a tumor is growing? For this, the team used focused ultrasound (FUS). FUS is similar to the ultrasound used for imaging internal organs, or a fetus growing in the womb, but has higher intensity and is focused into a tight point. Focusing the ultrasound on one spot causes the tissue in that location to heat up, but not the tissue surrounding it; by controlling the intensity of the ultrasound, the researchers were able to raise the temperature of that tissue to a specific degree.
"Focused ultrasound allowed us to activate the therapy specifically inside a tumor," says Mohamad Abedi (PhD '21), a former PhD student in Shapiro's group who co-led the project and is now a postdoctoral fellow at the University of Washington. "This is important because these potent drugs, which are so helpful in tumor treatment, can cause significant side effects in other organs where our bacterial agents may also be present."
To test whether their engineered strain of bacteria worked as intended, the research team injected bacterial cells into lab mice afflicted with tumors. After giving the bacteria time to infiltrate the tumors, the team used ultrasound to warm them.
Through a series of trials, the researchers found that mice treated with this strain of bacteria and ultrasound showed much slower tumor growth than mice treated only with ultrasound, mice treated only with the bacteria, and mice that were not treated at all.
However, the team also found that some of the tumors in treated mice did not shrink at all.
"This is a very promising result because it shows that we can target the right therapy to the right place at the right time," Shapiro says. "But as with any new technology there are a few things to optimize, including adding the ability to visualize the bacterial agents with ultrasound before we activate them and targeting the heating stimuli to them more precisely."
 
News
Researchers propose five key questions for effective adoption of AI in clinical practice
While Artificial Intelligence (AI) can be a powerful tool that physicians can use to help diagnose their patients and has great potential to improve accuracy, efficiency and patient safety, it has its drawbacks. It [...]
Advancements and clinical translation of intelligent nanodrugs for breast cancer treatment
A comprehensive review in "Biofunct. Mater." meticulously details the most recent advancements and clinical translation of intelligent nanodrugs for breast cancer treatment. This paper presents an exhaustive overview of subtype-specific nanostrategies, the clinical benefits [...]
It’s Not “All in Your Head”: Scientists Develop Revolutionary Blood Test for Chronic Fatigue Syndrome
A 96% accurate blood test for ME/CFS could transform diagnosis and pave the way for future long COVID detection. Researchers from the University of East Anglia and Oxford Biodynamics have created a highly accurate [...]
How Far Can the Body Go? Scientists Find the Ultimate Limit of Human Endurance
Even the most elite endurance athletes can’t outrun biology. A new study finds that humans hit a metabolic ceiling at about 2.5 times their resting energy burn. When ultra-runners take on races that last [...]
World’s Rivers “Overdosing” on Human Antibiotics, Study Finds
Researchers estimate that approximately 8,500 tons of antibiotics enter river systems each year after passing through the human body and wastewater treatment processes. Rivers spanning millions of kilometers across the globe are contaminated with [...]
Yale Scientists Solve a Century-Old Brain Wave Mystery
Yale scientists traced gamma brain waves to thalamus-cortex interactions. The discovery could reveal how brain rhythms shape perception and disease. For more than a century, scientists have observed rhythmic waves of synchronized neuronal activity [...]
Can introducing peanuts early prevent allergies? Real-world data confirms it helps
New evidence from a large U.S. primary care network shows that early peanut introduction, endorsed in 2015 and 2017 guidelines, was followed by a marked decline in clinician-diagnosed peanut and overall food allergies among [...]
Nanoparticle blueprints reveal path to smarter medicines
Lipid nanoparticles (LNPs) are the delivery vehicles of modern medicine, carrying cancer drugs, gene therapies and vaccines into cells. Until recently, many scientists assumed that all LNPs followed more or less the same blueprint, [...]
How nanomedicine and AI are teaming up to tackle neurodegenerative diseases
When I first realized the scale of the challenge posed by neurodegenerative diseases, such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis (ALS), I felt simultaneously humbled and motivated. These disorders are not caused [...]
Self-Organizing Light Could Transform Computing and Communications
USC engineers have demonstrated a new kind of optical device that lets light organize its own route using the principles of thermodynamics. Instead of relying on switches or digital control, the light finds its own [...]
Groundbreaking New Way of Measuring Blood Pressure Could Save Thousands of Lives
A new method that improves the accuracy of interpreting blood pressure measurements taken at the ankle could be vital for individuals who are unable to have their blood pressure measured on the arm. A newly developed [...]
Scientist tackles key roadblock for AI in drug discovery
The drug development pipeline is a costly and lengthy process. Identifying high-quality "hit" compounds—those with high potency, selectivity, and favorable metabolic properties—at the earliest stages is important for reducing cost and accelerating the path [...]
Nanoplastics with environmental coatings can sneak past the skin’s defenses
Plastic is ubiquitous in the modern world, and it's notorious for taking a long time to completely break down in the environment - if it ever does. But even without breaking down completely, plastic [...]
Chernobyl scientists discover black fungus feeding on deadly radiation
It looks pretty sinister, but it might actually be incredibly helpful When reactor number four in Chernobyl exploded, it triggered the worst nuclear disaster in history, one which the surrounding area still has not [...]
Long COVID Is Taking A Silent Toll On Mental Health, Here’s What Experts Say
Months after recovering from COVID-19, many people continue to feel unwell. They speak of exhaustion that doesn’t fade, difficulty breathing, or an unsettling mental haze. What’s becoming increasingly clear is that recovery from the [...]
Study Delivers Cancer Drugs Directly to the Tumor Nucleus
A new peptide-based nanotube treatment sneaks chemo into drug-resistant cancer cells, providing a unique workaround to one of oncology’s toughest hurdles. CiQUS researchers have developed a novel molecular strategy that allows a chemotherapy drug to [...]
 
									















 
	 
	 
	 
	