-
- Scientists have created a bacterium that is resistant to all viruses.
- Using strands of RNA, researchers re-coded the organism so that when viruses try to invade, their replication instructions get all mixed around.
- The team hopes their new tech will eventually be used to create virus-resistant bacteria to be used in producing things like insulin.
Viruses are often incredibly hard to treat. We’re certainly not strangers to that fact after the last few years. They’re extremely adaptable and very hard to destroy, making them very dangerous to human health. Antivirals can sometimes help a little, but usually—you get a virus, you’re stuck with it.
But what if instead of trying to treat these sneaky little beasts, we could stop them in their tracks before they even enter our cells? Create an organism that’s basically immune to viruses right off the bat? Well, geneticists at Harvard claim they’ve done just that.
In a recent study, a team of researchers announced that they had made an E. coli bacterium immune to all viruses. Well, all they could test in the lab, anyway.
“We can’t say it’s fully virus-resistant,” Akos Nyerges, genetics researcher and one of the authors of the study, said in a press release, “but so far, based on extensive laboratory experiments and computational analysis, we haven’t found a virus that can break it.”The researchers decided to take a “delete and trick” approach in the creation of their super-organism. They first went in and stripped the bacterium of three of its codons, which are little chunks of genetic code. And they didn’t just pick at random—they carefully deleted the codons that viruses latch onto to begin replicating themselves.
So, problem solved, right? Wrong.
It turns out that viruses can bring their own versions of these codons into the cell and bypass the deletions altogether, kind of like bringing a power adapter on an international trip so you can plug your devices into wrong-shaped outlets.
So, in step two, the scientists got a little tricky with RNA. Specifically with tRNA, or transfer RNA. When a virus is trying, to begin the replication process, it basically plugs a strand of tRNA into a codon, and the codon “prints” out an amino acid. That process creates proteins.
But critically, if the codons “print” the wrong amino acid, nothing gets made. You just get a string of gibberish instructions that halt the viral duplication process in its tracks. So, the researcher team inserted strands of tRNA into the E. coli that would tell the codons brought in by the viruses to produce the wrong amino acids. Theoretically, the virus could bring in it’s own tRNA too, but the researchers seem convinced that their tRNA strands win that fight.
With the codons now printing out completely wrong amino acids and the virus’s replication instructions being turned into nonsense, the infection was stopped before it even got started. With that success under their belt, the team eventually wants to use their new gene tech to create strands of virus-resistant bacteria that can be used to produce things like insulin.
And who knows? Maybe someday, we’ll be able to extend that tech to ourselves.

News
Studies detail high rates of long COVID among healthcare, dental workers
Researchers have estimated approximately 8% of Americas have ever experienced long COVID, or lasting symptoms, following an acute COVID-19 infection. Now two recent international studies suggest that the percentage is much higher among healthcare workers [...]
Melting Arctic Ice May Unleash Ancient Deadly Diseases, Scientists Warn
Melting Arctic ice increases human and animal interactions, raising the risk of infectious disease spread. Researchers urge early intervention and surveillance. Climate change is opening new pathways for the spread of infectious diseases such [...]
Scientists May Have Found a Secret Weapon To Stop Pancreatic Cancer Before It Starts
Researchers at Cold Spring Harbor Laboratory have found that blocking the FGFR2 and EGFR genes can stop early-stage pancreatic cancer from progressing, offering a promising path toward prevention. Pancreatic cancer is expected to become [...]
Breakthrough Drug Restores Vision: Researchers Successfully Reverse Retinal Damage
Blocking the PROX1 protein allowed KAIST researchers to regenerate damaged retinas and restore vision in mice. Vision is one of the most important human senses, yet more than 300 million people around the world are at [...]
Differentiating cancerous and healthy cells through motion analysis
Researchers from Tokyo Metropolitan University have found that the motion of unlabeled cells can be used to tell whether they are cancerous or healthy. They observed malignant fibrosarcoma cells and [...]
This Tiny Cellular Gate Could Be the Key to Curing Cancer – And Regrowing Hair
After more than five decades of mystery, scientists have finally unveiled the detailed structure and function of a long-theorized molecular machine in our mitochondria — the mitochondrial pyruvate carrier. This microscopic gatekeeper controls how [...]
Unlocking Vision’s Secrets: Researchers Reveal 3D Structure of Key Eye Protein
Researchers have uncovered the 3D structure of RBP3, a key protein in vision, revealing how it transports retinoids and fatty acids and how its dysfunction may lead to retinal diseases. Proteins play a critical [...]
5 Key Facts About Nanoplastics and How They Affect the Human Body
Nanoplastics are typically defined as plastic particles smaller than 1000 nanometers. These particles are increasingly being detected in human tissues: they can bypass biological barriers, accumulate in organs, and may influence health in ways [...]
Measles Is Back: Doctors Warn of Dangerous Surge Across the U.S.
Parents are encouraged to contact their pediatrician if their child has been exposed to measles or is showing symptoms. Pediatric infectious disease experts are emphasizing the critical importance of measles vaccination, as the highly [...]
AI at the Speed of Light: How Silicon Photonics Are Reinventing Hardware
A cutting-edge AI acceleration platform powered by light rather than electricity could revolutionize how AI is trained and deployed. Using photonic integrated circuits made from advanced III-V semiconductors, researchers have developed a system that vastly [...]
A Grain of Brain, 523 Million Synapses, Most Complicated Neuroscience Experiment Ever Attempted
A team of over 150 scientists has achieved what once seemed impossible: a complete wiring and activity map of a tiny section of a mammalian brain. This feat, part of the MICrONS Project, rivals [...]
The Secret “Radar” Bacteria Use To Outsmart Their Enemies
A chemical radar allows bacteria to sense and eliminate predators. Investigating how microorganisms communicate deepens our understanding of the complex ecological interactions that shape our environment is an area of key focus for the [...]
Psychologists explore ethical issues associated with human-AI relationships
It's becoming increasingly commonplace for people to develop intimate, long-term relationships with artificial intelligence (AI) technologies. At their extreme, people have "married" their AI companions in non-legally binding ceremonies, and at least two people [...]
When You Lose Weight, Where Does It Actually Go?
Most health professionals lack a clear understanding of how body fat is lost, often subscribing to misconceptions like fat converting to energy or muscle. The truth is, fat is actually broken down into carbon [...]
How Everyday Plastics Quietly Turn Into DNA-Damaging Nanoparticles
The same unique structure that makes plastic so versatile also makes it susceptible to breaking down into harmful micro- and nanoscale particles. The world is saturated with trillions of microscopic and nanoscopic plastic particles, some smaller [...]
AI Outperforms Physicians in Real-World Urgent Care Decisions, Study Finds
The study, conducted at the virtual urgent care clinic Cedars-Sinai Connect in LA, compared recommendations given in about 500 visits of adult patients with relatively common symptoms – respiratory, urinary, eye, vaginal and dental. [...]