The development of scaffold materials, such as nanoporous and nanofibrous hydrogel for biomedical applications, using green processes is a desirable approach.
Natural biopolymers have been utilized for wound dressing, owing to their bioactive compounds content, mechanical properties, biodegradability, porosity, and proper surface chemistry.
What is Silk Waste?
Silk waste includes different types of raw silks that are unwindable. Even though the composition of silk waste is very much similar to that of good silk, it cannot be utilized for the production of silk textiles.
Typically, silk waste is composed of silk fibroin (SF) core polymer (75−83%) and a sericin glue-like protein as a coating (17−25%).
SF is a natural protein of semi-crystalline structure which provides robust stiffness and impressive strength to silk.
SF has been utilized in various healthcare and biomedical products because of its biodegradability, good mechanical property, biocompatibility with human tissue, flexible morphology, drug permeability, antioxidant and hypolipidemic properties, and nontoxicity.
The US Food and Drug Administration (FDA) has approved SF protein from Bombyx mori silkworm for biomedical purposes.
Production of Polymeric Nanofibers by Electrospinning Method
Electrospinning is one of the most popular, simple, and scalable techniques used for producing polymeric nanofibers used for wound dressing.
Scientists have found that binary blends of SF with other materials enhance the properties of resultant scaffolds, due to the synergistic influence of both components.
Interestingly, the physiochemical properties of nanofibers can be controlled by optimizing the electrospinning parameters to attain the requirements of specific applications.
Typically, organic solvents are used in the electrospinning process due to their high dipole moment, conductivity, dielectric constant, and low surface tension. However, the majority of the organic solvents, such as dichloromethane, formic acid, and hexafluoroisopropanol (HFIP), are toxic.
Very few reports are available on the production of SF nanofiber materials via electrospinning process based on SF/poly(vinyl alcohol) (PVA) and SF/ poly(ethylene oxide) (PEO) in water and water/methanol systems.
However, scientists reported that the fabricated SF nanofibers are sensitive to moisture and can dissolve in the biological system before utilization.
Development of Strong Silk-Fibroin/Poly(ethylene oxide) Non-woven Nanofibers – A New Study
Generally, electrospun processes require some additives to stabilize the nanofibers after their synthesis. However, previous studies have indicated that these additives account for biological risks when used for biomedical purposes.
The new study reported on the development of an additive-free system that involves partial evaporation of the initial solving agent, which is followed by methanolic treatment to enhance the structural morphology.
The additive-free system also aids in improving the mechanical properties of the fabricated nanofibers.
Cross-linking techniques enable the nanofibrous materials to maintain the porosity and stability of the structure.
The radiation-induced crosslinking technique is known to be a green process for the production of hydrogel or scaffold. This is because the entire process, i.e., from the sample preparation to processing, is performed under liquid or solid-state.
The irradiation method utilizes γ-rays or electron beams (EBs) for sterilization of biomedical materials and production hydrogels with wide-ranging applications.
In the new study, scientists explored a dual green route to obtain strengthened SF-based nonwoven nanofibers using pure water for electrospinning and EB-assisted cross-linking technique.
For the fabrication of SF-PEO nanofibers, scientists primarily optimized the electrospinning process using SF/poly(PEO) in a pure water solution for the production of non-woven nanofibers.
Secondly, they focussed on stabilizing the dissoluble SF/ PEO non-woven nanofibers via cross-linking networks developed by a free radical reaction using EB irradiation.
Scientists revealed that this newly designed process lead to the production of cylindrical-shaped, smooth, and elongated SF-PEO nanofibers with a diameter of 169 ± 5 nm, under moderate conditions.
To achieve maximum stability in the fabricated nanofibers, the authors optimized the EB irradiation dose to be 25 kGy for cross-linking, and ~50% gel fraction.
The optimized conditions significantly improved the mechanical properties of the SF/PEO nanofiber.
The tensile strength and elongation at break were augmented and the ductility was increased approximately 22-fold.
Benefits of Silk-Fibroin/Poly(ethylene oxide) Non-woven Nanofibers
The authors reported that cross-linked SF/PEO nanofibers supported cell proliferation and were found to be non-toxic to skin fibroblast cells.
This strongly implies that this nanofiber material could be used for healthcare and biomedical purposes.
One of the important contributions of this study has been the utilization of the 3G strategy, i.e., green electrospinning, green EB irradiation process, and green renewable polymers (silk waste), for the production of non-toxic, strong, stable nanofibers, ideal for wound dressings.
Additionally, the swelling and water absorption property of the SF-PEO nanofiber could be utilized for drug entrapment and controlled release application.
News
AI Is Overheating. This New Technology Could Be the Fix
Engineers have developed a passive evaporative cooling membrane that dramatically improves heat removal for electronics and data centers Engineers at the University of California San Diego have created an innovative cooling system designed to greatly enhance [...]
New nanomedicine wipes out leukemia in animal study
In a promising advance for cancer treatment, Northwestern University scientists have re-engineered the molecular structure of a common chemotherapy drug, making it dramatically more soluble and effective and less toxic. In the new study, [...]
Mystery Solved: Scientists Find Cause for Unexplained, Deadly Diseases
A study reveals that a protein called RPA is essential for maintaining chromosome stability by stimulating telomerase. New findings from the University of Wisconsin-Madison suggest that problems with a key protein that helps preserve chromosome stability [...]
Nanotech Blocks Infection and Speed Up Chronic Wound Recovery
A new nanotech-based formulation using quercetin and omega-3 fatty acids shows promise in halting bacterial biofilms and boosting skin cell repair. Scientists have developed a nanotechnology-based treatment to fight bacterial biofilms in wound infections. The [...]
Researchers propose five key questions for effective adoption of AI in clinical practice
While Artificial Intelligence (AI) can be a powerful tool that physicians can use to help diagnose their patients and has great potential to improve accuracy, efficiency and patient safety, it has its drawbacks. It [...]
Advancements and clinical translation of intelligent nanodrugs for breast cancer treatment
A comprehensive review in "Biofunct. Mater." meticulously details the most recent advancements and clinical translation of intelligent nanodrugs for breast cancer treatment. This paper presents an exhaustive overview of subtype-specific nanostrategies, the clinical benefits [...]
It’s Not “All in Your Head”: Scientists Develop Revolutionary Blood Test for Chronic Fatigue Syndrome
A 96% accurate blood test for ME/CFS could transform diagnosis and pave the way for future long COVID detection. Researchers from the University of East Anglia and Oxford Biodynamics have created a highly accurate [...]
How Far Can the Body Go? Scientists Find the Ultimate Limit of Human Endurance
Even the most elite endurance athletes can’t outrun biology. A new study finds that humans hit a metabolic ceiling at about 2.5 times their resting energy burn. When ultra-runners take on races that last [...]
World’s Rivers “Overdosing” on Human Antibiotics, Study Finds
Researchers estimate that approximately 8,500 tons of antibiotics enter river systems each year after passing through the human body and wastewater treatment processes. Rivers spanning millions of kilometers across the globe are contaminated with [...]
Yale Scientists Solve a Century-Old Brain Wave Mystery
Yale scientists traced gamma brain waves to thalamus-cortex interactions. The discovery could reveal how brain rhythms shape perception and disease. For more than a century, scientists have observed rhythmic waves of synchronized neuronal activity [...]
Can introducing peanuts early prevent allergies? Real-world data confirms it helps
New evidence from a large U.S. primary care network shows that early peanut introduction, endorsed in 2015 and 2017 guidelines, was followed by a marked decline in clinician-diagnosed peanut and overall food allergies among [...]
Nanoparticle blueprints reveal path to smarter medicines
Lipid nanoparticles (LNPs) are the delivery vehicles of modern medicine, carrying cancer drugs, gene therapies and vaccines into cells. Until recently, many scientists assumed that all LNPs followed more or less the same blueprint, [...]
How nanomedicine and AI are teaming up to tackle neurodegenerative diseases
When I first realized the scale of the challenge posed by neurodegenerative diseases, such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis (ALS), I felt simultaneously humbled and motivated. These disorders are not caused [...]
Self-Organizing Light Could Transform Computing and Communications
USC engineers have demonstrated a new kind of optical device that lets light organize its own route using the principles of thermodynamics. Instead of relying on switches or digital control, the light finds its own [...]
Groundbreaking New Way of Measuring Blood Pressure Could Save Thousands of Lives
A new method that improves the accuracy of interpreting blood pressure measurements taken at the ankle could be vital for individuals who are unable to have their blood pressure measured on the arm. A newly developed [...]
Scientist tackles key roadblock for AI in drug discovery
The drug development pipeline is a costly and lengthy process. Identifying high-quality "hit" compounds—those with high potency, selectivity, and favorable metabolic properties—at the earliest stages is important for reducing cost and accelerating the path [...]















