In a recent study published in Nature, scientists used murine models to investigate how certain bacteria, such as Escherichia coli strains that contain a polyketide synthase (pks) island encoding enzymes that produce colibactin genotoxin, could increase the risk of colorectal cancer.
The study examined whether blocking the binding mechanisms of the toxin could prevent colorectal cancer.
Background
Colorectal cancer affects more than two million individuals worldwide every year and is one of the leading causes of cancer-associated mortality. Studies show that the disease is linked to Western lifestyles consisting of inadequate physical activity and unhealthy diets, and the incidence of colorectal cancer is rising, especially among people below 50 years of age. There is strong evidence supporting the role of the gut microbiome dysbiosis and some specific bacteria in promoting colorectal cancer.
Pathogenic strains of E. coli and Fusobacterium nucleatum have been identified as risk factors for colorectal cancer. Some strains of E. coli are known to carry genes that enable the production of colibactin. This toxin causes deoxyribonucleic acid (DNA) damage and has been found to be linked to both inflammatory bowel disease and colorectal cancer. This also suggests that bacteria-induced inflammation could potentially worsen the progression of colorectal cancer.
About the study
In the present study, researchers investigated the binding mechanisms through which the colibactin toxin produced by pks+ E. coli 11G5 strain causes the double-stranded breaks in DNA and cell cycle arrest to understand further how these pathogenic bacterial strains contribute to the development of colorectal cancer.
Studies from human intestinal organoids have reported that colibactin directly binds to the DNA, causing mutations that are often detected in colorectal cancer patients. However, the processes that allow the pks+ E. coli direct contact with the intestinal cells and the mechanisms through which colibactin reaches the host cell DNA remain unclear.
To investigate how pks+ E. coli might contribute to colorectal cancer, the researchers conducted a series of experiments using murine models and cultured cells. They used a mouse model with an impaired gut barrier to study the interactions between pks+ E. coli stains and the gut lining. The mice were orally exposed to the pks+ E. coli strain to observe bacterial infection-linked tumor development.
Histopathological methods and immunostaining were performed on tissue samples after four weeks to evaluate tumor burden, quantify E. coli presence, and assess the invasion levels in the colon. The size of the bacterial colonies and the localization in the gut epithelium were examined using scanning electron microscopy.
The inflammation levels were determined by analyzing the inflammatory markers such as C-X-C motif chemokine ligand 1 (CXCL1) and interleukins (IL) 17A and 1β. Additionally, transcriptomic analysis was performed to examine the expression of tumor-related genes in the epithelial and immune cells of the colon.
Furthermore, the researchers used mutant pks+ E. coli 11G5 strains that were lacking colibactin, or one of the two bacterial fimbrial adhesin genes FimH or FimlH, and compared it to the wild-type 11G5 strain to assess their ability to bind to epithelial cells and cause DNA damage. The study also used human colon cell cultures to measure DNA damage through in vitro damage assays involving immunofluorescence and flow cytometry.
Results
The study found that infection with the pks+ E. coli 11G5 strain promoted the progression of colorectal cancer in mice that had weakened intestinal barriers. The mice infected with the pks+ E. coli 11G5 strain developed more severe tumor-related indicators, such as higher tumor invasiveness and increased colon weight, than the control mice, which did not have an impaired gut barrier.
Furthermore, in comparison to the control strain of E. coli, which remained in the gut lumen, the pks+ E. coli 11G5 strain was able to strongly adhere to the epithelial cells and invade the gut lining, forming large bacterial colonies that were directly associated with the epithelial cells of the colon. This suggested that the pks+ E. coli 11G5 strain promoted colorectal cancer progression by infiltrating the colonic tissue.
The infected mice also showed higher levels of pro-inflammatory cytokines such as IL-17A, IL1β, and CXCL1. The transcriptomic analysis also revealed the activation of pathways that promoted tumor development, such as epithelial-to-mesenchymal transition pathways.
However, only the mice that were infected with the colibactin-producing strains of E. coli 11G5 were able to cause increased DNA damage. Additionally, the bacterial fimbrial adhesin genes were found to be critical for the tumor-promoting effects of pks+ E. coli 11G5 since the mutant strains lacking the adhesin genes failed to attach closely to the epithelial cells. The mice infected with the FimH and FimlH mutant strains experienced reduced tumor growth, lower epithelial invasion, and less DNA damage.
Conclusions
To conclude, the study reported that the progression of colorectal cancer linked to infection with pks+ E. coli required the strong adhesion of the bacteria to the colonic epithelial cells and the induction of DNA damage by colibactin. Targeting bacterial adhesins such as FimH and FimlH could provide potential therapeutic strategies to slow the bacterial-driven progression of colorectal cancer.
- Jans, M., Kolata, M., Blancke, G., D’Hondt, A., Gräf, C., Clers, M., Sze, M.,… et al. 2024. Colibactin-driven colon cancer requires adhesin-mediated epithelial binding. Nature. doi:10.1038/s41586-024-08135-z https://www.nature.com/articles/s41586-024-08135-z
News
Australian oysters’ blood could hold key to fighting drug-resistant superbugs
Protein found in Sydney rock oysters’ haemolymph can kill bacteria and boost some antibiotics’ effectiveness, scientists discover An antimicrobial protein found in the blood of an Australian oyster could help in the fight against [...]
First U.S. H5N1 Death Sparks Urgency: Scientists Warn Bird Flu Is Mutating Faster Than Expected
A human strain of H5N1 bird flu isolated in Texas shows mutations enabling better replication in human cells and causing more severe disease in mice compared to a bovine strain. While the virus isn’t [...]
AI Breakthrough in Nanotechnology Shatters Limits of Precision
At TU Graz, a pioneering research group is leveraging artificial intelligence to drastically enhance the way nanostructures are constructed. They aim to develop a self-learning AI system that can autonomously position molecules with unprecedented precision, potentially [...]
How Missing Sleep Lets Bad Memories Haunt Your Mind
Research reveals that a lack of sleep can hinder the brain’s ability to suppress unwanted memories and intrusive thoughts, emphasizing the importance of restful sleep for mental health. Sleep deprivation has been found to [...]
WHO issues new warning over ‘mystery virus’ and calls for return of COVID restrictions
The World Health Organization (WHO) has called for the reinstatement of restrictions implemented during the COVID-19 pandemic as cases of human metapneumovirus (HMPV) continue to surge. While hospitals in China are overwhelmed with positive [...]
A Breath Away From a Cure: How Xenon Gas Could Transform Alzheimer’s Treatment
A breakthrough study highlights Xenon gas as a potential game-changer in treating Alzheimer’s disease, demonstrating its ability to mitigate brain damage and improve cognitive functions in mouse models. A forthcoming clinical trial aims to test its [...]
False Memories Under Fire: Surprising Science Behind What We Really Recall
New research challenges the ease of implanting false memories, highlighting flaws in the influential “Lost in the Mall” study. By reexamining the data from a previous study, researchers found that many supposed false memories [...]
Born Different? Cambridge Scientists Uncover Innate Sex Differences in Brains
Cambridge researchers found that sex differences in brain structure exist from birth, with males having more white matter and females more grey matter, highlighting early neurodiversity. Research from the Autism Research Centre at the University [...]
New study shows risk factors for dementia – virus causes deposits in the brain
Research into the causes of Alzheimer's is not yet complete. Now a new study shows that head trauma can activate herpes viruses and promote the disease. Frankfurt am Main – As a neurodegenerative disease, [...]
Are Machines Truly Thinking? Modern AI Systems Have Finally Achieved Turing’s Vision
Modern AI systems have fulfilled Turing’s vision of machines that learn and converse like humans, but challenges remain. A new paper highlights concerns about energy consumption and societal inequality while calling for more robust [...]
The Surprising Link Between Smell, Sound, and Emotions
New research reveals how smell and hearing interact in the brain to drive social behavior, using mouse maternal instincts as a model. Imagine you’re at a dinner party, but you can’t smell the food [...]
Brain cells age at different rates
As our body ages, not only joints, bones and muscles wear out, but also our nervous system. Nerve cells die, are no longer fully replaced, and the brain shrinks. "Aging is the most important risk factor [...]
Long COVID Breakthrough: Spike Proteins Persist in Brain for Years
Researchers have discovered that the SARS-CoV-2 spike protein persists in the brain and skull bone marrow for years after infection, potentially leading to chronic inflammation and neurodegenerative diseases. Researchers from Helmholtz Munich and Ludwig-Maximilians-Universität (LMU) have [...]
Water-Resistant Paper Could Revolutionize Packaging and Replace Plastic
A groundbreaking study showcases the creation of sustainable hydrophobic paper, enhanced by cellulose nanofibres and peptides, presenting a biodegradable alternative to petroleum-based materials, with potential uses in packaging and biomedical devices. Researchers aimed to [...]
NIH Scientists Discover Game-Changing Antibodies Against Malaria
Novel antibodies have the potential to pave the way for the next generation of malaria interventions. Researchers at the National Institutes of Health (NIH) have identified a novel class of antibodies that target a previously unexplored region [...]
Surprising Discovery: What If Some Cancer Genes Are Actually Protecting You?
A surprising discovery reveals that a gene previously thought to accelerate esophageal cancer actually helps protect against it initially. This pivotal study could lead to better prediction and prevention strategies tailored to individual genetic [...]