Nanopore sensing has emerged as a versatile approach to detecting and identifying biomolecules. Within this frame of reference, the fast-responding ionic current is considered an essential criterion for accurately measuring small objects with a nanopore.
An article published in the journal IScience discussed the role of ion diffusion kinetics at the liquid-electrode interface in nanopore sensing. Here, a slow and large reduction in ionic current through a nanopore was observed using platinum (Pt) electrodes in a salt solution, suggesting the significant influence of impedance generated at the metal-liquid interface via Cottrell diffusion.
During the nanoparticle detection, the resistive pulses became weak, followed by a constant increase in the resistance at the partially polarizable electrodes. Moreover, the interfacial impedance coupled with the nanopore chip capacitance degraded the ionic current’s temporal resolution in a time-varying manner. The findings of the present work can help choose the ideal size and material of electrodes for analyzing single particles and molecules by the ionic current.
Nanopore Towards Analyte Detection
Nanopore helps analyze biological samples at a single molecule level. Nanopore sensing is developing into a powerful label-free approach to investigating the features of biomolecules at the single-molecule level.
Here, the translocation of species residing within a nanopore effectively changes the physical and chemical properties of the nanopore interior (conductance or refractive index), detected in a label-free manner.
When a charged molecule is captured within a nanopore, it modulates the ionic current, which is recorded in real-time to reveal the properties of the target molecule. Thus, the nanopore serves as a conductometer that detects a relative change in ion flow at the nanoscale level.
Electrochemistry in a confined space has attracted significant interest because of the intriguing effects of nanoconfinement on mass transport, electrochemical kinetics, and electric field. The nanopore electrochemistry provides a powerful method to address scientific challenges in nanoscience, biochemistry, and energy conversion and storage.
Nanopores providing the electrochemically confined space for the accommodation of single analytes directly convert the single-molecule behaviors into the measurable electrochemical read-outs with a high signal-to-noise ratio.
In the nanopore-based electrochemical reaction, the electric current reveals the dynamics at the electrode-liquid interfaces. Here, the application of voltage results in the over-consumption of reactants, disturbing the local ion distribution and subsequently inducing motions in the bulk that ultimately leads to the relaxation of the acute ion concentration gradient near the electrode surface. The ionic current gradually declines due to the Cottrell diffusion, and its features reveal information about the nature of ions.
Role of Electrodes in Nanopore Sensing
In the present study, the resistive pulse measurements of various polymer nanoparticles were compared using different kinds of electrodes to investigate the relevance of Cottrell diffusion in nanopore sensing. The findings in the present work proved the role of electrode materials in nanopore sensing.
Using a silver (Ag)/ silver chloride (AgCl) electrode system prevented fluctuations in ionic current flow in chloride solution, which otherwise were associated with variation in concentration of reactants and products due to their adsorption or precipitation at the surface of the electrode. The persistent ionic current consequently helped in detecting the particles and molecules.
On the other hand, replacing Ag/AgCl with Pt electrodes resulted in different ionic current characteristics. Here, the open pore current (Ipore) showed a large decrease compared to Ag/AgCl electrodes. Moreover, unlike Ag/AgCl electrodes, the electrochemical reactions in the chloride solution involved no precipitation or adsorption of the reactants, which induced a growing interfacial impedance.
While using Ag resulted in a reduced Ipore and the resistive pulse heights over time, using a titanium (Ti) electrode resolved the issue by maintaining a stable ionic current and uniform height resistive pulses of the polystyrene nanoparticles, demonstrating the superior usefulness of Ti compared to Ag/AgCl for nanopore sensing.
Conclusion and Limitation of the Study
Overall, the results of this study demonstrated the significance of electrode materials in nanopore sensing. It has been demonstrated that Ag/AgCl is especially helpful for obtaining persistent ionic current in a chloride solution for reliable resistive pulse detections of particles and molecules.
Electrochemical reactions at the Pt surfaces, in contrast to those at non-polarizable electrodes, did not result in the precipitation or adsorption of reactants, resulting in an increased interfacial impedance.
It has been shown that this Cottrell diffusion-derived resistance significantly reduced the temporal resolution of ionic current measurements and altered the translocation dynamics of analytes in a time-varying manner, making it impossible to distinguish between analytes like viruses and proteins based on the differences in the ionic signal waveforms.
Although the present work demonstrated the roles of electrode materials, the study was restricted to only nanopores of 300-nanometer diameter. Moreover, since the smaller nanopores possess a larger resistor of resistance at the nanopore (Rpore), the role of Cottrell diffusion changes as the voltage division at the resistor of resistance at the electrode (Rele) becomes smaller.

News
Scientists Invent Plastic That Can Dissolve In Seawater In Just A Few Hours
Plastic waste and pollution in the sea have been among the most serious environmental problems for decades, causing immense damage to marine life and ecosystems. However, a breakthrough discovery may offer a game-changing solution. [...]
Muscles from the 3D printer
Swiss researchers have developed a method for printing artificial muscles out of silicone. In the future, these could be used on both humans and robots. Swiss researchers have succeeded in printing artificial muscles out [...]
Beneficial genetic changes observed in regular blood donors
Researchers at the Francis Crick Institute have identified genetic changes in blood stem cells from frequent blood donors that support the production of new, non-cancerous cells. Understanding the differences in the mutations that accumulate [...]
Shocking Amounts of Microplastics in the Brain – It Could Be Increasing Our Risk of Dementia
The brain has higher concentrations of plastic particles compared to other organs, with increased levels found in dementia patients. In a comprehensive commentary published in Brain Medicine, researchers highlight alarming new evidence of microplastic accumulation [...]
Baffling Scientists for Centuries: New Study Unravels Mystery of Static Electricity
ISTA physicists demonstrate that contact electrification depends on the contact history of materials. For centuries, static electricity has intrigued and perplexed scientists. Now, researchers from the Waitukaitis group at the Institute of Science and [...]
Tumor “Stickiness” – Scientists Develop Potential New Way To Predict Cancer’s Spread
UC San Diego researchers have developed a device that predicts breast cancer aggressiveness by measuring tumor cell adhesion. Weakly adherent cells indicate a higher risk of metastasis, especially in early-stage DCIS. This innovation could [...]
Scientists Just Watched Atoms Move for the First Time Using AI
Scientists have developed a groundbreaking AI-driven technique that reveals the hidden movements of nanoparticles, essential in materials science, pharmaceuticals, and electronics. By integrating artificial intelligence with electron microscopy, researchers can now visualize atomic-level changes that were [...]
Scientists Sound Alarm: “Safe” Antibiotic Has Led to an Almost Untreatable Superbug
A recent study reveals that an antibiotic used for liver disease patients may increase their risk of contracting a dangerous superbug. An international team of researchers has discovered that rifaximin, a commonly prescribed antibiotic [...]
Scientists Discover Natural Compound That Stops Cancer Progression
A discovery led by OHSU was made possible by years of study conducted by University of Portland undergraduates. Scientists have discovered a natural compound that can halt a key process involved in the progression [...]
Scientists Just Discovered an RNA That Repairs DNA Damage – And It’s a Game-Changer
Our DNA is constantly under threat — from cell division errors to external factors like sunlight and smoking. Fortunately, cells have intricate repair mechanisms to counteract this damage. Scientists have uncovered a surprising role played by [...]
What Scientists Just Discovered About COVID-19’s Hidden Death Toll
COVID-19 didn’t just claim lives directly—it reshaped mortality patterns worldwide. A major international study found that life expectancy plummeted across most of the 24 analyzed countries, with additional deaths from cardiovascular disease, substance abuse, and mental [...]
Self-Propelled Nanoparticles Improve Immunotherapy for Non-Invasive Bladder Cancer
A study led by Pohang University of Science and Technology (POSTECH) and the Institute for Bioengineering of Catalonia (IBEC) in South Korea details the creation of urea-powered nanomotors that enhance immunotherapy for bladder cancer. The nanomotors [...]
Scientists Develop New System That Produces Drinking Water From Thin Air
UT Austin researchers have developed a biodegradable, biomass-based hydrogel that efficiently extracts drinkable water from the air, offering a scalable, sustainable solution for water access in off-grid communities, emergency relief, and agriculture. Discarded food [...]
AI Unveils Hidden Nanoparticles – A Breakthrough in Early Disease Detection
Deep Nanometry (DNM) is an innovative technique combining high-speed optical detection with AI-driven noise reduction, allowing researchers to find rare nanoparticles like extracellular vesicles (EVs). Since EVs play a role in disease detection, DNM [...]
Inhalable nanoparticles could help treat chronic lung disease
Nanoparticles designed to release antibiotics deep inside the lungs reduced inflammation and improved lung function in mice with symptoms of chronic obstructive pulmonary disease By Grace Wade Delivering medication to the lungs with inhalable nanoparticles [...]
New MRI Study Uncovers Hidden Lung Abnormalities in Children With Long COVID
Long COVID is more than just lingering symptoms—it may have a hidden biological basis that standard medical tests fail to detect. A groundbreaking study using advanced MRI technology has uncovered significant lung abnormalities in [...]