Nanoplastics derived from plastic waste are increasingly accumulating in agricultural farmlands. The absorption and deposition of plastic particles by crops pollute the food supply and pose unanticipated health concerns to human beings. However, the effects of nanoplastics on crop grains cultivated in polluted soil remain relatively unknown.
A recent study published in the journal Advanced Science tackles this problem by investigating the transportation of polystyrene nanoplastics (PS-NPs) in various crops, such as peanuts and rice. This important research also examines the influence of nanoplastics on the productivity and nutritional value of crop grains.
Polystyrene Nanoplastics: Overview and Environmental Concerns
Plastic manufacturing has steadily expanded over the previous 30 years, with annual output exceeding 360 million tons in 2018. Polystyrene (PS), which has a high volatile constituent ratio, has emerged as a prominent and toxic plastic substance.
Large plastic wastes may be split into microplastics (100 nanometers – 5 millimeteres) and subsequently decomposed into nanoplastics (<100 nanometers) due to global warming, ultraviolet radiation, and slow microbial degradation. This growing amount of nanoplastic waste is continuously polluting the oceans, rivers, and farmlands.
Nanoplastics have been identified as substantial marine pollutants, with hundreds of thousands of metric tons estimated to be drifting on the surfaces of the main marine ecosystems. However, recent research has also shown nanoplastic pollution in freshwater bodies and various terrestrial habitats.
Impacts of Nanoplastics on Crops and Terrestrial Plants
Crops, which are essential components of the food supply chain, can absorb and retain harmful nanoparticles from the environment. However, terrestrial habitats have recently received significantly less research interest than their aquatic equivalents concerning nanoplastic toxicity.
Some investigations have shown that nanoplastics can penetrate plant roots and reach the leaves. Polystyrene nanoplastics (PS-NPs) can infiltrate plant cells via cracks in wheat and lettuce crops. Additionally, charged nanoplastics have the potential to aggregate and significantly hinder the development and reproduction of a variety of terrestrial plants.
Consuming nanoplastic-contaminated crop grains can also endanger human health. Although recent studies have assessed the entry, dispersion, and cytotoxicity of nanoplastics in crops, little is understood about nanoplastic deposition and activities inside seeds, which are the fundamental living constituent of the biosphere at the lowest nutritional stage of the food chain.
Highlights and Key Developments of the Current Study
The current research sought to ascertain if nanoplastics in soil could migrate into crop grains. Rice and peanut were chosen as crop models since their seeds develop on the ground and underground, respectively.
As a vital socioeconomic crop, rice is the primary diet of more than half of the planet’s population. Also, peanuts are a good source of proteins and fatty acids (FAs), ranking second only to soybeans in both volume and nutrition.
The treatment of these crops with polystyrene nanoplastics (PS-NPs) raised the empty-shell numbers of rice grain by 35.45%, resulting in a 3.02% decrease in the seed-setting rate of rice and a 3.45% decrease in the average seed weight of peanuts. Moreover, PS-NPs harmed the nutritional quality of rice and peanut crops by lowering the number of essential minerals, amino acids, and unsaturated fatty acids.
The researchers in this work proved for the first time that nanoplastics could accumulate in rice and peanut seeds. Similarly, nanoplastics had a significant detrimental impact on crop grain quality. These findings suggest that the usage of plastic items in agriculture has a negative impact on food security across the food chain.
Future Outlook
Given their widespread dispersion, future research should look at the possible ecological consequences of nanoplastics, which can damage agricultural production and nutrient delivery.
Relevant studies have revealed that PS-NPs have a high surface-to-volume and hydrophilic nature and might act as transporters for various environmental pollutants such as insecticides, herbicides, and toxic substances, allowing pollutants to accumulate in crop grains.
As a result, introducing nanoplastics into crop grains may be accompanied by additional dangers that threaten public health more than the nanoplastics themselves.
The experiments in this work used PS-NPs to investigate the absorption of nanoplastics and their impact on crop grains. However, there are various sorts of nanoplastics in the atmosphere, and nanoplastics made of other substances may have different effects on crop grains. As a result, future studies should examine the use of nanoplastics comprised of various materials.

News
Scientists Invent Plastic That Can Dissolve In Seawater In Just A Few Hours
Plastic waste and pollution in the sea have been among the most serious environmental problems for decades, causing immense damage to marine life and ecosystems. However, a breakthrough discovery may offer a game-changing solution. [...]
Muscles from the 3D printer
Swiss researchers have developed a method for printing artificial muscles out of silicone. In the future, these could be used on both humans and robots. Swiss researchers have succeeded in printing artificial muscles out [...]
Beneficial genetic changes observed in regular blood donors
Researchers at the Francis Crick Institute have identified genetic changes in blood stem cells from frequent blood donors that support the production of new, non-cancerous cells. Understanding the differences in the mutations that accumulate [...]
Shocking Amounts of Microplastics in the Brain – It Could Be Increasing Our Risk of Dementia
The brain has higher concentrations of plastic particles compared to other organs, with increased levels found in dementia patients. In a comprehensive commentary published in Brain Medicine, researchers highlight alarming new evidence of microplastic accumulation [...]
Baffling Scientists for Centuries: New Study Unravels Mystery of Static Electricity
ISTA physicists demonstrate that contact electrification depends on the contact history of materials. For centuries, static electricity has intrigued and perplexed scientists. Now, researchers from the Waitukaitis group at the Institute of Science and [...]
Tumor “Stickiness” – Scientists Develop Potential New Way To Predict Cancer’s Spread
UC San Diego researchers have developed a device that predicts breast cancer aggressiveness by measuring tumor cell adhesion. Weakly adherent cells indicate a higher risk of metastasis, especially in early-stage DCIS. This innovation could [...]
Scientists Just Watched Atoms Move for the First Time Using AI
Scientists have developed a groundbreaking AI-driven technique that reveals the hidden movements of nanoparticles, essential in materials science, pharmaceuticals, and electronics. By integrating artificial intelligence with electron microscopy, researchers can now visualize atomic-level changes that were [...]
Scientists Sound Alarm: “Safe” Antibiotic Has Led to an Almost Untreatable Superbug
A recent study reveals that an antibiotic used for liver disease patients may increase their risk of contracting a dangerous superbug. An international team of researchers has discovered that rifaximin, a commonly prescribed antibiotic [...]
Scientists Discover Natural Compound That Stops Cancer Progression
A discovery led by OHSU was made possible by years of study conducted by University of Portland undergraduates. Scientists have discovered a natural compound that can halt a key process involved in the progression [...]
Scientists Just Discovered an RNA That Repairs DNA Damage – And It’s a Game-Changer
Our DNA is constantly under threat — from cell division errors to external factors like sunlight and smoking. Fortunately, cells have intricate repair mechanisms to counteract this damage. Scientists have uncovered a surprising role played by [...]
What Scientists Just Discovered About COVID-19’s Hidden Death Toll
COVID-19 didn’t just claim lives directly—it reshaped mortality patterns worldwide. A major international study found that life expectancy plummeted across most of the 24 analyzed countries, with additional deaths from cardiovascular disease, substance abuse, and mental [...]
Self-Propelled Nanoparticles Improve Immunotherapy for Non-Invasive Bladder Cancer
A study led by Pohang University of Science and Technology (POSTECH) and the Institute for Bioengineering of Catalonia (IBEC) in South Korea details the creation of urea-powered nanomotors that enhance immunotherapy for bladder cancer. The nanomotors [...]
Scientists Develop New System That Produces Drinking Water From Thin Air
UT Austin researchers have developed a biodegradable, biomass-based hydrogel that efficiently extracts drinkable water from the air, offering a scalable, sustainable solution for water access in off-grid communities, emergency relief, and agriculture. Discarded food [...]
AI Unveils Hidden Nanoparticles – A Breakthrough in Early Disease Detection
Deep Nanometry (DNM) is an innovative technique combining high-speed optical detection with AI-driven noise reduction, allowing researchers to find rare nanoparticles like extracellular vesicles (EVs). Since EVs play a role in disease detection, DNM [...]
Inhalable nanoparticles could help treat chronic lung disease
Nanoparticles designed to release antibiotics deep inside the lungs reduced inflammation and improved lung function in mice with symptoms of chronic obstructive pulmonary disease By Grace Wade Delivering medication to the lungs with inhalable nanoparticles [...]
New MRI Study Uncovers Hidden Lung Abnormalities in Children With Long COVID
Long COVID is more than just lingering symptoms—it may have a hidden biological basis that standard medical tests fail to detect. A groundbreaking study using advanced MRI technology has uncovered significant lung abnormalities in [...]