Every skin flake, hair follicle, eyelash, and spit drop cast from your body contains instructions written in a chemical code, one that is unique to you.
According to a new study, technology has advanced to the point that it's now possible to sift scraps of human DNA out of the air, water, or soil and decipher personal details about the individuals who dropped them.
As useful as this might seem, the study's authors warn society might not be prepared for the consequences.
"Any time we make a technological advance, there are beneficial things that the technology can be used for and concerning things that the technology can be used for," says University of Florida zoologist David Duffy, who led a project that tested the limits of sequencing human DNA from the environment.
"These are issues we are trying to raise early so policy makers and society have time to develop regulations."
Earth's surface is dusted in discarded plant and animal cells and disintegrated microbes, spilling out what researchers refer to as environmental or 'e' DNA.
By amplifying the smallest scraps of eDNA and reading the sequences, researchers can accurately produce an ecological cast list of organisms present in any one habitat, all at speeds and costs that couldn't be achieved by field work.
What's more, those representative genetic samples can also deliver insights that no other process could accomplish on their own, such as informing researchers on the presence of diseases or the relationships between populations.
This is all well and good when zoologists are plucking long lost genes from ancient sediment, or fishing for signs of a mythological monster in Loch Ness. But in that genetic soup there are bound to be strands of material left by passing humans as well. And unlike Nessie, people tend to get a little funny about who snoops on their genetic secrets.
While older methods of sequencing have struggled to find meaningful human genetic sequences within eDNA samples, a process known as shotgun sequencing isn't quite so limited, as demonstrated by Duffy and his team in their recent investigation.
The research team took water and sand samples from near the Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital at the University of Florida, and from environments along a river in Duffy's home country of Ireland. Among the sites they collected samples from was an isolated island and a mountain stream far from human habitation.
Referred to as human genetic bycatch (HGB), many of the chromosomal fragments they identified using the shotgun approach contained identifying information about their source.
Only the island and remote stream were free of human DNA, although traces of the research team's own genes could be extracted from their footprints in the isolated island's sand.
Air samples from the university's sea turtle hospital also contained eDNA that could be traced to staff, animals, and common animal viruses.
"We've been consistently surprised throughout this project at how much human DNA we find and the quality of that DNA," says Duffy. "In most cases the quality is almost equivalent to if you took a sample from a person."
It's easy to think of ways such highly detailed genetic assays using HGB might be applied in fields of epidemiology or population genetics. Yet the sources of the identifiable DNA in this experiment all consented to be involved in the study, in line with the ethics of published genetic research.
"It's standard in science to make these sequences publicly available. But that also means if you don't screen out human information, anyone can come along and harvest this information," says Duffy.
"That raises issues around consent. Do you need to get consent to take those samples? Or institute some controls to remove human information?"
As a forensics tool, the benefits are something of a doubled-edged sword, expanding on methods for tracing individuals to a scene of a crime.
Yet in light of the CSI effect, where the results of DNA testing is easily misinterpreted by a Hollywood-influenced judiciary, the legal consequences of HGB identification are also yet to be fully explored.
There is also the concern of how far public surveillance should extend in the name of security.
"To be sure, solving crime is a good thing," says Natalie Ram, a law expert from the University of Maryland who wasn't involved in the study.
"But exploiting involuntarily shed genetic information for investigative aims risks putting all of us under perpetual genetic surveillance."
We might imagine an authority maintaining an archive of DNA scraps that have drifted onto just about any crime scene, one few of us would feel comfortable being a part of.
It's far from the first time society has wrestled with the ethical and legal questions of genetic rights, of course. But the net collecting personal genetic information is clearly growing, prompting us to continue asking who should have the ultimate say over the unique code that describes us as individuals.
News
Lipid nanoparticles discovered that can deliver mRNA directly into heart muscle cells
Cardiovascular disease continues to be the leading cause of death worldwide. But advances in heart-failure therapeutics have stalled, largely due to the difficulty of delivering treatments at the cellular level. Now, a UC Berkeley-led [...]
The basic mechanisms of visual attention emerged over 500 million years ago, study suggests
The brain does not need its sophisticated cortex to interpret the visual world. A new study published in PLOS Biology demonstrates that a much older structure, the superior colliculus, contains the necessary circuitry to perform the [...]
AI Is Overheating. This New Technology Could Be the Fix
Engineers have developed a passive evaporative cooling membrane that dramatically improves heat removal for electronics and data centers Engineers at the University of California San Diego have created an innovative cooling system designed to greatly enhance [...]
New nanomedicine wipes out leukemia in animal study
In a promising advance for cancer treatment, Northwestern University scientists have re-engineered the molecular structure of a common chemotherapy drug, making it dramatically more soluble and effective and less toxic. In the new study, [...]
Mystery Solved: Scientists Find Cause for Unexplained, Deadly Diseases
A study reveals that a protein called RPA is essential for maintaining chromosome stability by stimulating telomerase. New findings from the University of Wisconsin-Madison suggest that problems with a key protein that helps preserve chromosome stability [...]
Nanotech Blocks Infection and Speed Up Chronic Wound Recovery
A new nanotech-based formulation using quercetin and omega-3 fatty acids shows promise in halting bacterial biofilms and boosting skin cell repair. Scientists have developed a nanotechnology-based treatment to fight bacterial biofilms in wound infections. The [...]
Researchers propose five key questions for effective adoption of AI in clinical practice
While Artificial Intelligence (AI) can be a powerful tool that physicians can use to help diagnose their patients and has great potential to improve accuracy, efficiency and patient safety, it has its drawbacks. It [...]
Advancements and clinical translation of intelligent nanodrugs for breast cancer treatment
A comprehensive review in "Biofunct. Mater." meticulously details the most recent advancements and clinical translation of intelligent nanodrugs for breast cancer treatment. This paper presents an exhaustive overview of subtype-specific nanostrategies, the clinical benefits [...]
It’s Not “All in Your Head”: Scientists Develop Revolutionary Blood Test for Chronic Fatigue Syndrome
A 96% accurate blood test for ME/CFS could transform diagnosis and pave the way for future long COVID detection. Researchers from the University of East Anglia and Oxford Biodynamics have created a highly accurate [...]
How Far Can the Body Go? Scientists Find the Ultimate Limit of Human Endurance
Even the most elite endurance athletes can’t outrun biology. A new study finds that humans hit a metabolic ceiling at about 2.5 times their resting energy burn. When ultra-runners take on races that last [...]
World’s Rivers “Overdosing” on Human Antibiotics, Study Finds
Researchers estimate that approximately 8,500 tons of antibiotics enter river systems each year after passing through the human body and wastewater treatment processes. Rivers spanning millions of kilometers across the globe are contaminated with [...]
Yale Scientists Solve a Century-Old Brain Wave Mystery
Yale scientists traced gamma brain waves to thalamus-cortex interactions. The discovery could reveal how brain rhythms shape perception and disease. For more than a century, scientists have observed rhythmic waves of synchronized neuronal activity [...]
Can introducing peanuts early prevent allergies? Real-world data confirms it helps
New evidence from a large U.S. primary care network shows that early peanut introduction, endorsed in 2015 and 2017 guidelines, was followed by a marked decline in clinician-diagnosed peanut and overall food allergies among [...]
Nanoparticle blueprints reveal path to smarter medicines
Lipid nanoparticles (LNPs) are the delivery vehicles of modern medicine, carrying cancer drugs, gene therapies and vaccines into cells. Until recently, many scientists assumed that all LNPs followed more or less the same blueprint, [...]
How nanomedicine and AI are teaming up to tackle neurodegenerative diseases
When I first realized the scale of the challenge posed by neurodegenerative diseases, such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis (ALS), I felt simultaneously humbled and motivated. These disorders are not caused [...]
Self-Organizing Light Could Transform Computing and Communications
USC engineers have demonstrated a new kind of optical device that lets light organize its own route using the principles of thermodynamics. Instead of relying on switches or digital control, the light finds its own [...]















