By harnessing the power of composite polymer particles adorned with gold nanoparticles, a group of researchers have delivered a more accurate means of testing for infectious diseases. | |
Details of their research was published in the journal Langmuir (“Gold Nanoparticle-Decorated Polymer (GNDP) Particles for High-Optical-Density Immunoassay Probes”). | |
The COVID-19 pandemic reinforced the need for fast and reliable infectious disease testing in large numbers. Most testing done today involves antigen-antibody reactions. Fluorescence, absorptions, or color particle probes are attached to antibodies. When the antibodies stick to the virus, these probes visualize the virus’s presence. In particular, the use of color nanoparticles is renowned for its excellent visuality, along with its simplicity to implement, with little scientific equipment needed to perform lateral flow tests. |
Gold color nanoparticles (AU-NP), with their high chemical stability and unique plasmon absorption, are widely employed as probes in immunoassay tests. They exhibit extreme versatility, with their colors fluctuating according to their size and shape. Additionally, their surface can be modified by using thiol compounds. | |
Conventional tests that use AU-NP often have to amplify AU-NP’s optical density, so that scientists can easily measure the strength of the signal produced by the interaction between antibodies and the target substance. | |
Adding more gold nanoparticles is one means to do this. But because nanoparticles are tiny, it requires a large quantity of them to achieve a strong enough signal for accurate detection. | |
To overcome this, the researchers proposed a new method called self-organized precipitation (SORP). SORP works by dissolving polymers into organic solvents before adding a liquid that doesn’t dissolve the polymers well, like water. After the original organic solvent is removed by evaporation, polymers assemble together, forming tiny particles. | |
“Using gold nanoparticle decorated polymers (GDNP) assembled by SORP, we set out to see how effective they would be in detecting the influenza virus, and whether they offered improved sensitivity in detecting antigen-antibody reactions,” states Hiroshi Yabu, co-author of the paper and professor at Tohoku University’s Advanced Institute for Materials Research (AIMR). “And it did. Our method resulted in a higher optical density than original AU-NPs and GNDPs decorated with smaller AU-NPs.” | |
Yabu and his colleagues’ findings reinforce that GNDP particles have broad utility, extending beyond laboratory settings to real-world diagnostic scenarios. |
Source: Tohoku University (Note: Content may be edited for style and length) |

News
Studies detail high rates of long COVID among healthcare, dental workers
Researchers have estimated approximately 8% of Americas have ever experienced long COVID, or lasting symptoms, following an acute COVID-19 infection. Now two recent international studies suggest that the percentage is much higher among healthcare workers [...]
Melting Arctic Ice May Unleash Ancient Deadly Diseases, Scientists Warn
Melting Arctic ice increases human and animal interactions, raising the risk of infectious disease spread. Researchers urge early intervention and surveillance. Climate change is opening new pathways for the spread of infectious diseases such [...]
Scientists May Have Found a Secret Weapon To Stop Pancreatic Cancer Before It Starts
Researchers at Cold Spring Harbor Laboratory have found that blocking the FGFR2 and EGFR genes can stop early-stage pancreatic cancer from progressing, offering a promising path toward prevention. Pancreatic cancer is expected to become [...]
Breakthrough Drug Restores Vision: Researchers Successfully Reverse Retinal Damage
Blocking the PROX1 protein allowed KAIST researchers to regenerate damaged retinas and restore vision in mice. Vision is one of the most important human senses, yet more than 300 million people around the world are at [...]
Differentiating cancerous and healthy cells through motion analysis
Researchers from Tokyo Metropolitan University have found that the motion of unlabeled cells can be used to tell whether they are cancerous or healthy. They observed malignant fibrosarcoma [...]
This Tiny Cellular Gate Could Be the Key to Curing Cancer – And Regrowing Hair
After more than five decades of mystery, scientists have finally unveiled the detailed structure and function of a long-theorized molecular machine in our mitochondria — the mitochondrial pyruvate carrier. This microscopic gatekeeper controls how [...]
Unlocking Vision’s Secrets: Researchers Reveal 3D Structure of Key Eye Protein
Researchers have uncovered the 3D structure of RBP3, a key protein in vision, revealing how it transports retinoids and fatty acids and how its dysfunction may lead to retinal diseases. Proteins play a critical [...]
5 Key Facts About Nanoplastics and How They Affect the Human Body
Nanoplastics are typically defined as plastic particles smaller than 1000 nanometers. These particles are increasingly being detected in human tissues: they can bypass biological barriers, accumulate in organs, and may influence health in ways [...]
Measles Is Back: Doctors Warn of Dangerous Surge Across the U.S.
Parents are encouraged to contact their pediatrician if their child has been exposed to measles or is showing symptoms. Pediatric infectious disease experts are emphasizing the critical importance of measles vaccination, as the highly [...]
AI at the Speed of Light: How Silicon Photonics Are Reinventing Hardware
A cutting-edge AI acceleration platform powered by light rather than electricity could revolutionize how AI is trained and deployed. Using photonic integrated circuits made from advanced III-V semiconductors, researchers have developed a system that vastly [...]
A Grain of Brain, 523 Million Synapses, Most Complicated Neuroscience Experiment Ever Attempted
A team of over 150 scientists has achieved what once seemed impossible: a complete wiring and activity map of a tiny section of a mammalian brain. This feat, part of the MICrONS Project, rivals [...]
The Secret “Radar” Bacteria Use To Outsmart Their Enemies
A chemical radar allows bacteria to sense and eliminate predators. Investigating how microorganisms communicate deepens our understanding of the complex ecological interactions that shape our environment is an area of key focus for the [...]
Psychologists explore ethical issues associated with human-AI relationships
It's becoming increasingly commonplace for people to develop intimate, long-term relationships with artificial intelligence (AI) technologies. At their extreme, people have "married" their AI companions in non-legally binding ceremonies, and at least two people [...]
When You Lose Weight, Where Does It Actually Go?
Most health professionals lack a clear understanding of how body fat is lost, often subscribing to misconceptions like fat converting to energy or muscle. The truth is, fat is actually broken down into carbon [...]
How Everyday Plastics Quietly Turn Into DNA-Damaging Nanoparticles
The same unique structure that makes plastic so versatile also makes it susceptible to breaking down into harmful micro- and nanoscale particles. The world is saturated with trillions of microscopic and nanoscopic plastic particles, some smaller [...]
AI Outperforms Physicians in Real-World Urgent Care Decisions, Study Finds
The study, conducted at the virtual urgent care clinic Cedars-Sinai Connect in LA, compared recommendations given in about 500 visits of adult patients with relatively common symptoms – respiratory, urinary, eye, vaginal and dental. [...]