Northwestern Medicine scientists have developed a more effective way of creating nanotherapeutic vaccines and medicines, according to a new study published in ACS Nano.
In the Mirkin laboratory, investigators have harnessed this SNA technology in their work to design precision nanomedicines for use in gene regulation and in cancer immunotherapy with limited unwanted side effects through a systematic development process known as rational vaccinology.
“In the development of vaccines, historically, very little attention has been paid to vaccine structure,” said Mirkin, who is also a member of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University. “All of the emphasis has been on the components. The premise of rational vaccinology is that, while components are critical, structure is equally important. How you present vaccine components within a modular nanoscale architecture can have a dramatic impact on vaccine efficacy, whether it’s treating infectious disease or cancer.”
In the study, investigators first tested the effects of using different chemical anchoring groups to attach the oligonucleotides—short strands of DNA or RNA—to the surface of the liposomes to prepare SNAs. They found that when increasingly hydrophobic dodecane-based anchoring groups were used, the stability of the nanostructure was significantly improved. When introduced to bone marrow-derived dendritic cells from mice, these more stable SNA constructs exhibited improved cellular uptake compared to the other versions of SNAs that were prepared using other types of anchoring groups, with different chemistries.
“We discovered a way to anchor the oligonucleotides to the surface of the particle that changes the overall stability of the SNA construct, which is critical,” said Jasper Dittmar, a Ph.D. student in the Mirkin laboratory and a co-author of the study. “The beauty of the SNA architecture is that it’s recognized by almost all cell types, immune cells included, and rapidly internalized. You get the vaccine to enter the cells that matter at the stoichiometry you’d like, with the desired number of antigens and adjuvant molecules.”
Scientists in the Mirkin lab then loaded the SNA vaccine with OVA1 (a model peptide derived from egg protein often used in vaccine development) and administered that to mice with lymphoma. The OVA1 SNA-treated mice not only had a greater number of polyfunctional T-cells (which are considered potent against chronic infections and tumors), they also showed a 21-fold reduction in tumor volumes compared to saline-treated mice, according to the study.
To assess the inflammatory side effects of the vaccine, investigators then studied the SNA to see if it activated excessive immune responses in mice. Mice given the treatment did not produce a cytokine storm, a sometimes-fatal side effect of immunotherapies.
Because cytokine storms are associated with severe cases of COVID-19, Mirkin and his research team also created an SNA vaccine where the OVA1 peptide was swapped out for a peptide from the virus that causes COVID-19 (CoV peptide) and administered it to human cells and ultimately mice. The investigators found that the vaccine enhanced antigen-specific, anti-COVID immune responses with minimal adverse side effects.
“Taken together, the results of this study lay a foundation for a new way of developing and delivering vaccines and other precision treatments, regardless of the target disease,” said Michael Evangelopoulos, a Ph.D. student in the Mirkin lab and a co-author of the study.
The findings also highlight the importance of vaccine construction, Mirkin said.
“Structure matters,” Mirkin said. “In a field where we’ve spent very little time focused on the structure of vaccines, we have may have been missing the forest for the trees. It’s a combined understanding of the components and the structural presentation that leads to an efficacious medicine or not.”
Moving forward, the Mirkin group will continue to devise different configurations of SNA vaccines to assess which are the most effective, he said.
“We are spending a lot of time using the SNA platform to figure out the structures that are the most efficacious, and then trying to figure out why that is, what works and then also why it works,” Mirkin said. “We think that by doing that, we’ll be able to create a whole new generation of medicines based upon this concept of rational vaccinology.”
More information: Jasper W. Dittmar et al, Tuning DNA Dissociation from Spherical Nucleic Acids for Enhanced Immunostimulation, ACS Nano (2023). DOI: 10.1021/acsnano.3c04333
Journal information: ACS Nano
News
Lipid nanoparticles discovered that can deliver mRNA directly into heart muscle cells
Cardiovascular disease continues to be the leading cause of death worldwide. But advances in heart-failure therapeutics have stalled, largely due to the difficulty of delivering treatments at the cellular level. Now, a UC Berkeley-led [...]
The basic mechanisms of visual attention emerged over 500 million years ago, study suggests
The brain does not need its sophisticated cortex to interpret the visual world. A new study published in PLOS Biology demonstrates that a much older structure, the superior colliculus, contains the necessary circuitry to perform the [...]
AI Is Overheating. This New Technology Could Be the Fix
Engineers have developed a passive evaporative cooling membrane that dramatically improves heat removal for electronics and data centers Engineers at the University of California San Diego have created an innovative cooling system designed to greatly enhance [...]
New nanomedicine wipes out leukemia in animal study
In a promising advance for cancer treatment, Northwestern University scientists have re-engineered the molecular structure of a common chemotherapy drug, making it dramatically more soluble and effective and less toxic. In the new study, [...]
Mystery Solved: Scientists Find Cause for Unexplained, Deadly Diseases
A study reveals that a protein called RPA is essential for maintaining chromosome stability by stimulating telomerase. New findings from the University of Wisconsin-Madison suggest that problems with a key protein that helps preserve chromosome stability [...]
Nanotech Blocks Infection and Speed Up Chronic Wound Recovery
A new nanotech-based formulation using quercetin and omega-3 fatty acids shows promise in halting bacterial biofilms and boosting skin cell repair. Scientists have developed a nanotechnology-based treatment to fight bacterial biofilms in wound infections. The [...]
Researchers propose five key questions for effective adoption of AI in clinical practice
While Artificial Intelligence (AI) can be a powerful tool that physicians can use to help diagnose their patients and has great potential to improve accuracy, efficiency and patient safety, it has its drawbacks. It [...]
Advancements and clinical translation of intelligent nanodrugs for breast cancer treatment
A comprehensive review in "Biofunct. Mater." meticulously details the most recent advancements and clinical translation of intelligent nanodrugs for breast cancer treatment. This paper presents an exhaustive overview of subtype-specific nanostrategies, the clinical benefits [...]
It’s Not “All in Your Head”: Scientists Develop Revolutionary Blood Test for Chronic Fatigue Syndrome
A 96% accurate blood test for ME/CFS could transform diagnosis and pave the way for future long COVID detection. Researchers from the University of East Anglia and Oxford Biodynamics have created a highly accurate [...]
How Far Can the Body Go? Scientists Find the Ultimate Limit of Human Endurance
Even the most elite endurance athletes can’t outrun biology. A new study finds that humans hit a metabolic ceiling at about 2.5 times their resting energy burn. When ultra-runners take on races that last [...]
World’s Rivers “Overdosing” on Human Antibiotics, Study Finds
Researchers estimate that approximately 8,500 tons of antibiotics enter river systems each year after passing through the human body and wastewater treatment processes. Rivers spanning millions of kilometers across the globe are contaminated with [...]
Yale Scientists Solve a Century-Old Brain Wave Mystery
Yale scientists traced gamma brain waves to thalamus-cortex interactions. The discovery could reveal how brain rhythms shape perception and disease. For more than a century, scientists have observed rhythmic waves of synchronized neuronal activity [...]
Can introducing peanuts early prevent allergies? Real-world data confirms it helps
New evidence from a large U.S. primary care network shows that early peanut introduction, endorsed in 2015 and 2017 guidelines, was followed by a marked decline in clinician-diagnosed peanut and overall food allergies among [...]
Nanoparticle blueprints reveal path to smarter medicines
Lipid nanoparticles (LNPs) are the delivery vehicles of modern medicine, carrying cancer drugs, gene therapies and vaccines into cells. Until recently, many scientists assumed that all LNPs followed more or less the same blueprint, [...]
How nanomedicine and AI are teaming up to tackle neurodegenerative diseases
When I first realized the scale of the challenge posed by neurodegenerative diseases, such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis (ALS), I felt simultaneously humbled and motivated. These disorders are not caused [...]
Self-Organizing Light Could Transform Computing and Communications
USC engineers have demonstrated a new kind of optical device that lets light organize its own route using the principles of thermodynamics. Instead of relying on switches or digital control, the light finds its own [...]















