In a recent study published in npj Vaccines, a group of researchers demonstrated that a single-dose intranasal application of a modified Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strain ∆3678 effectively induces robust immune responses, protecting mice against various forms of the virus, suggesting its potential as an efficient mucosal vaccine.
Background
Over three years, SARS-CoV-2, the instigator of the coronavirus disease 2019 (COVID-19) pandemic, has claimed over 6.9 million lives globally. Despite the expedited creation of four Food and Drug Administration (FDA)-authorized vaccines, their efficacy is threatened by emerging, more transmissible variants known for immune evasion.
The current vaccines, delivered via injection, can potentially provoke insufficient respiratory tract immune reactions, especially against these variants. Intranasal immunization can stimulate robust local and systemic immunity, offering enhanced protection.
Further research is essential due to the ongoing global health threat posed by SARS-CoV-2 variants and the limited respiratory tract immune responses induced by current parenterally administered vaccines, underscoring the need for an optimized intranasal vaccine that effectively bolsters both mucosal and systemic immunity.
About the study
The researchers cultivated Vero-E6 cells from African green monkeys and Vero-E6-TMPRSS2 cells, maintaining them at 37°C with 5% CO2.
They used infectious clones of SARS-CoV-2, ∆3678, and the BA.5 variant. For animal studies, female K18-hACE2 C57BL/6J mice, aged 8-10 weeks, were infected intranasally (i.n.) with either the WT WA1 or ∆3678 viruses or mock-infected.
On day 28 post-initial infection, they were challenged with the WT WA1 or BA.5 virus. The researchers monitored the mice for weight changes and health status, euthanizing those losing over 20% of their body weight.
The University of Texas Medical Branch’s Institutional Animal Care and Use Committee sanctioned all experiments in an Animal Biosafety Level 3 (ABSL3) environment. Researchers processed lung lobes for plaque assays and utilized centrifugation for clarification.
They employed the Enzyme-Linked Immunosorbent Assay (ELISA) with SARS-CoV-2 Receptor-Binding Domain (RBD) protein for antibody detection. B cell Enzyme-Linked ImmunoSPOT (ELISPOT) assays adhered to known protocols. Lung leukocytes or splenocytes were also exposed to SARS-CoV-2 peptides for intracellular cytokine staining using specific antibodies.
Lung tissues were subjected to RNA extraction and analyzed using the nCounter Pro System, with results visualized in R 4.1.2. Statistical evaluations of viral loads, cytokines, antibodies, and cell responses were performed using Prism software, employing non-paired Student’s t-tests for p-values.
Study results
In the present study, researchers employed K18-hACE2 mice to explore the potential of the ∆3678 virus as a vaccine against SARS-CoV-2, inspired by previous research. The mice received intranasal immunization with this attenuated strain, with groups administered wild-type SARS-CoV-2 USA-WA1/2020 or a placebo serving as controls.
Remarkably, all mice immunized with the ∆3678 virus thrived without signs of weight loss or ill health 28 days after vaccination, contrasting with some fatalities and weight loss in mice exposed to the wild-type virus.
When the researchers analyzed immune responses, they discovered both the ∆3678 and wild-type virus evoked a Th1-skewed response in the lungs. The ∆3678 group exhibited notable T cell activation, especially in the heightened presence and activity of CD4+ and CD8+ T cells producing Interferon Gamma (IFNγ).
Although both groups showed robust Immunoglobulin A (IgA)+ B cell responses, the ∆3678 groups were slightly diminished. Interestingly, both groups exhibited comparable SARS-CoV-2-specific IgA or IgG antibodies, with similar patterns observed in the spleen, indicating a systemic Th1-prone response.
The team then assessed the vaccine’s protective efficacy, exposing the immunized mice to a high dose of wild-type SARS-CoV-2, and observed that mice previously inoculated with either the ∆3678 or wild-type virus exhibited neither traces of the virus in their lungs or trachea nor weight loss following the challenge, contrasting with the control group.
Notably, even when challenged with the Omicron BA.5 variant, the ∆3678 group demonstrated no detectable viral presence, highlighting the vaccine’s broad protective potential.
Further analyses post-challenge revealed an enhanced immune response in ∆3678-immunized mice, particularly in the increased numbers of activated T cells in the lungs and spleen. Additionally, both vaccinated groups exhibited strong antibody responses.
Researchers analyzed lung tissue gene expression to decipher the immunity mechanisms, uncovering diminished inflammatory signaling in vaccinated groups and identifying genes linked to long-lasting lung-resident memory T-cell responses.
These findings collectively suggest the ∆3678 strain, though highly attenuated, effectively stimulates comprehensive immune responses in mice, even those previously exposed to SARS-CoV-2. The vaccine appears to confer solid protection against diverse SARS-CoV-2 strains, including the Omicron variant.
The promise shown by intranasal administration of this live-attenuated vaccine candidate in mice warrants further exploration, especially considering the potential for enhanced and sustained mucosal immunity.
However, its efficacy in humans requires further investigation. The profound insights gained from this study underline the ∆3678 virus as a compelling candidate for future SARS-CoV-2 vaccines, potentially impacting both human and veterinary medicine.
- Adam, A., Kalveram, B., Chen, J.YC. et al. (2023) A single-dose of intranasal vaccination with a live-attenuated SARS-CoV-2 vaccine candidate promotes protective mucosal and systemic immunity. npj Vaccines., doi: https://doi.org/10.1038/s41541-023-00753-4. https://www.nature.com/articles/s41541-023-00753-4

News
Chernobyl scientists discover black fungus feeding on deadly radiation
It looks pretty sinister, but it might actually be incredibly helpful When reactor number four in Chernobyl exploded, it triggered the worst nuclear disaster in history, one which the surrounding area still has not [...]
Long COVID Is Taking A Silent Toll On Mental Health, Here’s What Experts Say
Months after recovering from COVID-19, many people continue to feel unwell. They speak of exhaustion that doesn’t fade, difficulty breathing, or an unsettling mental haze. What’s becoming increasingly clear is that recovery from the [...]
Study Delivers Cancer Drugs Directly to the Tumor Nucleus
A new peptide-based nanotube treatment sneaks chemo into drug-resistant cancer cells, providing a unique workaround to one of oncology’s toughest hurdles. CiQUS researchers have developed a novel molecular strategy that allows a chemotherapy drug to [...]
Scientists Begin $14.2 Million Project To Decode the Body’s “Hidden Sixth Sense”
An NIH-supported initiative seeks to unravel how the nervous system tracks and regulates the body’s internal organs. How does your brain recognize when it’s time to take a breath, when your blood pressure has [...]
Scientists Discover a New Form of Ice That Shouldn’t Exist
Researchers at the European XFEL and DESY are investigating unusual forms of ice that can exist at room temperature when subjected to extreme pressure. Ice comes in many forms, even when made of nothing but water [...]
Nobel-winning, tiny ‘sponge crystals’ with an astonishing amount of inner space
The 2025 Nobel Prize in chemistry was awarded to Richard Robson, Susumu Kitagawa and Omar Yaghi on Oct. 8, 2025, for the development of metal-organic frameworks, or MOFs, which are tunable crystal structures with extremely [...]
Harnessing Green-Synthesized Nanoparticles for Water Purification
A new review reveals how plant- and microbe-derived nanoparticles can power next-gen water disinfection, delivering cleaner, safer water without the environmental cost of traditional treatments. A recent review published in Nanomaterials highlights the potential of green-synthesized nanomaterials (GSNMs) in [...]
Brainstem damage found to be behind long-lasting effects of severe Covid-19
Damage to the brainstem - the brain's 'control center' - is behind long-lasting physical and psychiatric effects of severe Covid-19 infection, a study suggests. Using ultra-high-resolution scanners that can see the living brain in [...]
CT scan changes over one year predict outcomes in fibrotic lung disease
Researchers at National Jewish Health have shown that subtle increases in lung scarring, detected by an artificial intelligence-based tool on CT scans taken one year apart, are associated with disease progression and survival in [...]
AI Spots Hidden Signs of Disease Before Symptoms Appear
Researchers suggest that examining the inner workings of cells more closely could help physicians detect diseases earlier and more accurately match patients with effective therapies. Researchers at McGill University have created an artificial intelligence tool capable of uncovering [...]
Breakthrough Blood Test Detects Head and Neck Cancer up to 10 Years Before Symptoms
Mass General Brigham’s HPV-DeepSeek test enables much earlier cancer detection through a blood sample, creating a new opportunity for screening HPV-related head and neck cancers. Human papillomavirus (HPV) is responsible for about 70% of [...]
Study of 86 chikungunya outbreaks reveals unpredictability in size and severity
The symptoms come on quickly—acute fever, followed by debilitating joint pain that can last for months. Though rarely fatal, the chikungunya virus, a mosquito-borne illness, can be particularly severe for high-risk individuals, including newborns and older [...]
Tiny Fat Messengers May Link Obesity to Alzheimer’s Plaque Buildup
Summary: A groundbreaking study reveals how obesity may drive Alzheimer’s disease through tiny messengers called extracellular vesicles released from fat tissue. These vesicles carry lipids that alter how quickly amyloid-β plaques form, a hallmark of [...]
Ozone exposure weakens lung function and reshapes the oral microbiome
Scientists reveal that short-term ozone inhalation doesn’t just harm the lungs; it reshapes the microbes in your mouth, with men facing the greatest risks. Ozone is a toxic environmental pollutant with wide-ranging effects on [...]
New study reveals molecular basis of Long COVID brain fog
Even though many years have passed since the start of the COVID-19 pandemic, the effects of infection with SARS-CoV-2 are not completely understood. This is especially true for Long COVID, a chronic condition that [...]
Scientists make huge Parkinson’s breakthrough as they discover ‘protein trigger’
Scientists have, for the first time, directly visualised the protein clusters in the brain believed to trigger Parkinson's disease, bringing them one step closer to potential treatments. Parkinson's is a progressive incurable neurological disorder [...]