A research team from Johns Hopkins Medicine and Johns Hopkins University has developed a machine-learning (ML) tool capable of predicting who has the highest probability of being naturally resistant to COVID-19 infection despite being exposed to SARS-CoV-2, the virus that causes it.
The study, published this week in PLOS One, aims to better understand the factors that influence COVID-19 resistance.
“If we can identify which people are naturally able to avoid infection by SARS-CoV-2, we may be able to learn — in addition to societal and behavioral factors — which genetic and environmental differences influence their defense against the virus,” said Karen (Kai-Wen) Yang, lead study author and a biomedical engineering graduate student in the Translational Informatics Research and Innovation Lab at Johns Hopkins University, in the press release. “That insight could lead to new preventive measures and more highly targeted treatments.”
To develop their model, the researchers gathered data from the Johns Hopkins COVID-19 Precision Medicine Analytics Platform Registry (JH-CROWN), which contains information for patients with a suspected or confirmed SARS-CoV-2 infection seen within the Johns Hopkins Health System, the press release states.
From this information, the research team selected patients who had received a COVID-19 test between June 10, 2020, and Dec. 15, 2020, and reported “potential exposure to the virus” as the reason for testing. Dec. 15 was chosen as the end date because it was just before large-scale COVID-19 vaccination efforts began in the US, which allowed researchers to avoid the confounding effects of vaccines, rather than natural resistance, on preventing COVID-19 infection.
The final cohort comprised 8,536 study participants who were divided into two groups: those who either did not share a household with any COVID-19 patients or whose household had 10 or more patients, and those who shared a residence with 10 or fewer people, with at least one being a COVID-19 patient.
The first group, consisting of 8,476 participants, served as the training and initial testing test, while the remaining 60 participants were grouped into a Household Index (HHI) Set, which served as a separate testing set.
EHR data from the cohort was analyzed using the Maximal-frequent All-confident pattern Selection Pattern-based Clustering (MASPC) algorithm, which combines patient demographic information, the relevant International Statistical Classification of Diseases and Related Health Problems (ICD) medical diagnostic codes, outpatient medication orders, and the number of comorbidities present for each patient.
“We hypothesized that MASPC would enable us to cluster patients with similar patterns in their data to define them as resistant and non-resistant to SARS-CoV-2, and with the hope that the algorithm would learn with each analysis how to improve the accuracy and reliability of future assignments,” explained co-senior study author Stuart Ray, MD, vice chair of medicine for data integrity and analytics, and professor of medicine at the Johns Hopkins University School of Medicine, in the press release. “This initial study using JH-CROWN data was conducted to give life to that hypothesis, a proof-of-concept trial of our statistical model to show that resistance to COVID-19 might be predictable based [on] a patient’s clinical and demographic profile.”
The researchers were able to identify 56 of these patterns, five of which captured who was most likely exposed to the virus.
“Looking for these patterns in HHI Set — the individuals most likely to have been exposed to SARS-CoV-2 in close quarters — and then statistically analyzing the results, our model’s best performance was 0.61,” says Ray. “Since a score of 0.5 shows only chance association between the prediction and reality, and 1 is 100% association, this shows the model has promise as a tool for identifying people with COVID-19 resistance who can be further studied.”
The researchers noted that the study has multiple limitations, such as potential bias from the self-reporting of COVID-19 exposure by participants, the small number of participants in the HHI group, the short timeframe of the study, and the possibility that participants may have taken tests for SARS-CoV-2 using home kits or at facilities outside the Johns Hopkins system, which would not have been recorded in the JH-CROWN database.
News
Lingering Viral Fragments: The Hidden Cause of Long COVID
Long COVID, affecting 5-10% of COVID-19 patients, might be caused by the enduring presence of the virus in the body. Research suggests that viral fragments, possibly live, linger and lead to symptoms. Addressing this involves antiviral treatments, enhanced [...]
Hidden Scars: How COVID Lockdowns Altered Teen Brains Forever
Research from the University of Washington revealed that COVID-19 lockdowns led to accelerated cortical thinning in adolescents, impacting brain development significantly. This effect was more pronounced in females than males, raising concerns about long-term brain health. The study [...]
Simple Blood Test To Detect Dementia Before Symptoms Appear
UCLA researchers have identified placental growth factor (PlGF) as a potential blood biomarker for early detection of cognitive impairment and dementia. High PlGF levels correlate with increased vascular permeability, suggesting its role in the development [...]
Investing Goldman Sachs asks ‘Is curing patients a sustainable business model?’
Goldman Sachs analysts attempted to address a touchy subject for biotech companies, especially those involved in the pioneering “gene therapy” treatment: cures could be bad for business in the long run. “Is curing patients [...]
The risks of reversed chirality: Study highlights dangers of mirror organisms
A groundbreaking study evaluates the feasibility, risks, and ethical considerations of creating mirror bacteria with reversed chirality, highlighting potential threats to health and ecosystems. In a recent study published in Science, a team of researchers [...]
Alarming Mutation in H5N1 Virus Raises Pandemic Red Flags
NIH-funded study concludes that the risk of human infection remains low A recent study published in Science and funded by the National Institutes of Health (NIH) has found that a single alteration in a protein on the surface [...]
Scientists Discover Genetic Changes Linked to Autism, Schizophrenia
The Tbx1 gene influences brain volume and social behavior in autism and schizophrenia, with its deficiency linked to amygdala shrinkage and impaired social incentive evaluation. A study published in Molecular Psychiatry has linked changes in brain [...]
How much permafrost will melt this century, and where will its carbon go?
Among the many things global warming will be melting this century—sea ice, land glaciers and tourist businesses in seaside towns across the world—is permafrost. Lying underneath 15% of the northern hemisphere, permafrost consists of [...]
A Physics Discovery So Strange It’s Changing Quantum Theory
MIT physicists surprised to discover electrons in pentalayer graphene can exhibit fractional charge. New theoretical research from MIT physicists explains how it could work, suggesting that electron interactions in confined two-dimensional spaces lead to novel quantum states, [...]
Inside the Nano-Universe: New 3D X-Ray Imaging Transforms Material Science
A cutting-edge X-ray method reveals the 3D orientation of nanoscale material structures, offering fresh insights into their functionality. Researchers at the Swiss Light Source (SLS) have developed a groundbreaking technique called X-ray linear dichroic orientation tomography [...]
X-chromosome study reveals hidden genetic links to Alzheimer’s disease
Despite decades of research, the X-chromosome’s impact on Alzheimer’s was largely ignored until now. Explore how seven newly discovered genetic loci could revolutionize our understanding of the disease. Conventional investigations of the genetic contributors [...]
The Unresolved Puzzle of Long COVID: 30% of Young People Still Suffer After Two Years
A UCL study found that 70% of young people with long Covid recovered within 24 months, but recovery was less likely among older teenagers, females, and those from deprived backgrounds. Researchers emphasized the need [...]
Needle-Free: New Nano-Vaccine Effective Against All COVID-19 Variants
A new nano-vaccine developed by TAU and the University of Lisbon offers a needle-free, room-temperature-storable solution against COVID-19, targeting all key variants effectively. Professor Ronit Satchi-Fainaro’s lab at Tel Aviv University’s Faculty of Medical and [...]
Photoacoustic PDA-ICG Nanoprobe for Detecting Senescent Cells in Cancer
A study in Scientific Reports evaluated a photoacoustic polydopamine-indocyanine green (PDA-ICG) nanoprobe for detecting senescent cells. Senescent cells play a role in tumor progression and therapeutic resistance, with potential adverse effects such as inflammation and tissue [...]
How Dysregulated Cell Signaling Causes Disease
Cell signaling is crucial for cells to communicate and function correctly. Disruptions in these pathways, caused by genetic mutations or environmental factors, can lead to uncontrolled cell growth, improper immune responses, or errors in [...]
Scientists Develop Super-Strong, Eco-Friendly Plastic That Bacteria Can Eat
Researchers at the Weizmann Institute have developed a biodegradable composite material that could play a significant role in addressing the global plastic waste crisis. Billions of tons of plastic waste clutter our planet. Most [...]