Some researchers are driven by the quest to improve a specific product, like a battery or a semiconductor. Others are motivated by tackling questions faced by a given industry. Rob Macfarlane, MIT’s Paul M. Cook Associate Professor in Materials Science and Engineering, is driven by a more fundamental desire. | |
“I like to make things,” Macfarlane says. “I want to make materials that can be functional and useful, and I want to do so by figuring out the basic principles that go into making new structures at many different size ranges.” |
He adds, “For a lot of industries or types of engineering, materials synthesis is treated as a solved problem — making a new device is about using the materials we already have, in new ways. In our lab’s research efforts, we often have to educate people that the reason we can’t do X, Y, or Z right now is because we don’t have the materials needed to enable those technological advances. In many cases, we simply don’t know how to make them yet. This is the goal of our research: Our lab is about enabling the materials needed to develop new technologies, rather than focusing on just the end products.” | |
By uncovering design principles for nanocomposites, which are materials made from mixtures of polymers and nanoparticles, Macfarlane’s career has gradually evolved from designing specks of novel materials to building functional objects you can hold in your hand. Eventually, he believes his research will lead to new ways of making products with fine-tuned and predetermined combinations of desired electrical, mechanical, optical, and magnetic properties. | |
Along the way Macfarlane, who earned tenure last year, has also committed himself to mentoring students. He’s taught three undergraduate chemistry courses at MIT, including his current course, 3.010 (Synthesis and Design of Materials), which introduces sophomores to the fundamental concepts necessary for designing and making their own new structures in the future. He also recently redesigned a course in which he teaches graduate students how to be educators by learning how to do things like write a syllabus, communicate with and mentor students, and design homework assignments. | |
Ultimately, Macfarlane believes mentoring the next generation of researchers is as important as publishing papers. | |
“I’m fortunate. I’ve been successful, and I have the opportunity to pursue research I’m passionate about,” he says. “Now I view a major component of my job as enabling my students to be successful. The real product and output of what I do here is not just the science and tech advancements and patents, it’s the students that go on to industry or academia or wherever else they choose, and then change the world in their own ways.” | |
From nanometers to millimeters |
|
Macfarlane was born and raised on a small farm in Palmer, Alaska, a suburban community about 45 minutes north of Anchorage. When he was in high school, the town announced budget cuts that would force the school to scale back a number of classes. In response, Macfarlane’s mother, a former school teacher, encouraged him to enroll in the science education classes that would be offered to students a year older than him, so he wouldn’t miss the chance to take them. | |
“She knew education was paramount, so she said ‘We’re going to get you into these last classes before they get watered down,’” Macfarlane recalls. | |
Macfarlane didn’t know any of the students in his new classes, but he had a passionate chemistry teacher that helped him discover a love for the subject. As a result, when he decided to attend Willamette University in Oregon as an undergraduate, he immediately declared himself a chemistry major (which he later adjusted to biochemistry). | |
Macfarlane attended Yale University for his master’s degree and initially began a PhD there before moving to Northwestern University, where a PhD student’s seminar set Macfarlane on a path he’d follow for the rest of his career. | |
“[The PhD student] was doing exactly what I was interested in,” says Macfarlane, who asked the student’s PhD advisor, Professor Chad Mirkin, to be his advisor as well. “I was very fortunate when I joined Mirkin’s lab, because the project I worked on had been initiated by a sixth-year grad student and a postdoc that published a big paper and then immediately left. So, there was this wide-open field nobody was working on. It was like being given a blank canvas with a thousand different things to do.” | |
The work revolved around a precise way to bind particles together using synthetic DNA strands that act like Velcro. | |
Researchers have known for decades that certain materials exhibit unique properties when assembled at the scale of 1 to 100 nanometers. It was also believed that building things out of those precisely organized assemblies could give objects unique properties. The problem was finding a way to get the particles to bind in a predictable way. | |
With the DNA-based approach, Macfarlane had a starting point. | |
“[The researchers] had said, ‘Okay, we’ve shown we can make a thing, but can we make all the things with DNA?’” Macfarlane says. “My PhD thesis was about developing design rules so that if you use a specific set of building blocks, you get a known set of nanostructures as a result. Those rules allowed us to make hundreds of different crystal structures with different sizes, compositions, shapes, lattice structures, etc.” | |
After completing his PhD, Macfarlane knew he wanted to go into academia, but his biggest priority had nothing to do with work. | |
“I wanted to go somewhere warm,” Macfarlane says. “I had lived in Alaska for 18 years. I did a PhD in Chicago for six years. I just wanted to go somewhere warm for a while.” | |
Macfarlane ended up at Caltech in Pasadena, California, working in the labs of Harry Atwater and Nobel laureate Bob Grubbs. Researchers in those labs were studying self-assembly using a new type of polymer, which Macfarlane says required a “completely different” skillset compared to his PhD work. | |
In 2015, after two years of learning to build materials using polymers and soaking up the sun, Macfarlane plunged back into the cold and joined MIT’s faculty. In Cambridge, Macfarlane has focused on merging the assembly techniques he’s developed for both polymers, DNA, and inorganic nanoparticles to make new materials at larger scales. | |
That work led Macfarlane and a group of researchers to create a new type of self-assembling building blocks that his lab has dubbed “nanocomposite tectons” (NCTs). NCTs use polymers and molecules that can mimic the ability of DNA to direct the self-organization of nanoscale objects, but with far more scalablility — meaning these materials could be used to build macroscopic objects that can a person can hold in their hand. | |
“[The objects] had controlled composition at the polymer and nanoparticle level; they had controlled grain sizes and microstructural features; and they had a controlled macroscopic three-dimensional form; and that’s never been done before,” Macfarlane says. “It opened up a huge number of possibilities by saying all those properties that people have been studying for decades on these nanoparticles and their assemblies, now we can actually make them into something functional and useful.” | |
A world of possibilities |
|
As Macfarlane continues working to make NCTs more scalable, he’s excited about a number of potential applications. | |
One involves programming objects to transfer energy in specific ways. In the case of mechanical energy, if you hit the object with a hammer or it were involved in a car crash, the resulting energy could dissipate in a way that protects what’s on the other side. In the case of photons or electrons, you could design a precise path for the energy or ions to travel through, which could improve the efficiency of energy storage, computing, and transportation components. | |
The truth is that such precise design of materials has too many potential applications to count. | |
Working on such fundamental problems excites Macfarlane, and the possibilities coming from his work will only grow as his team continues to make advances. | |
“In the end, NCTs open up many new possibilities for materials design, but what might be especially industrially relevant is not so much the NCTs themselves, but what we’ve learned along the way,” Macfarlane says. “We’ve learned how to develop new syntheses and processing methods, so one of the things I’m most excited about is making materials with these methods that have compositions that were previously inaccessible.” |

News
The CDC buried a measles forecast that stressed the need for vaccinations
This story was originally published on ProPublica, a nonprofit newsroom that investigates abuses of power. Sign up to receive our biggest stories as soon as they’re published. ProPublica — Leaders at the Centers for Disease Control and Prevention [...]
Light-Driven Plasmonic Microrobots for Nanoparticle Manipulation
A recent study published in Nature Communications presents a new microrobotic platform designed to improve the precision and versatility of nanoparticle manipulation using light. Led by Jin Qin and colleagues, the research addresses limitations in traditional [...]
Cancer’s “Master Switch” Blocked for Good in Landmark Study
Researchers discovered peptides that permanently block a key cancer protein once thought untreatable, using a new screening method to test their effectiveness inside cells. For the first time, scientists have identified promising drug candidates [...]
AI self-cloning claims: A new frontier or a looming threat?
Chinese scientists claim that some AI models can replicate themselves and protect against shutdown. Has artificial intelligence crossed the so-called red line? Chinese researchers have published two reports on arXiv claiming that some artificial [...]
New Drug Turns Human Blood Into Mosquito-Killing Weapon
Nitisinone, a drug for rare diseases, kills mosquitoes when present in human blood and may become a new tool to fight malaria, offering longer-lasting, environmentally safer effects than ivermectin. Controlling mosquito populations is a [...]
DNA Microscopy Creates 3D Maps of Life From the Inside Out
What if you could take a picture of every gene inside a living organism—not with light, but with DNA itself? Scientists at the University of Chicago have pioneered a revolutionary imaging technique called volumetric DNA microscopy. It builds [...]
Scientists Just Captured the Stunning Process That Shapes Chromosomes
Scientists at EMBL have captured how human chromosomes fold into their signature rod shape during cell division, using a groundbreaking method called LoopTrace. By observing overlapping DNA loops forming in high resolution, they revealed that large [...]
Bird Flu Virus Is Mutating Fast – Scientists Say Our Vaccines May Not Be Enough
H5N1 influenza is evolving rapidly, weakening the effectiveness of existing antibodies and increasing its potential threat to humans. Scientists at UNC Charlotte and MIT used high-performance computational modeling to analyze thousands of viral protein-antibody interactions, revealing [...]
Revolutionary Cancer Vaccine Targets All Solid Tumors
The method triggers immune responses that inhibit melanoma, triple-negative breast cancer, lung carcinoma, and ovarian cancer. Cancer treatment vaccines have been in development since 2010, when the first was approved for prostate cancer, followed [...]
Scientists Uncover Hidden Protein Driving Autoimmune Attacks
Scientists have uncovered a critical piece of the puzzle in autoimmune diseases: a protein that helps release immune response molecules. By studying an ultra-rare condition, researchers identified ArfGAP2 as a key player in immune [...]
Mediterranean neutrino observatory sets new limits on quantum gravity
Quantum gravity is the missing link between general relativity and quantum mechanics, the yet-to-be-discovered key to a unified theory capable of explaining both the infinitely large and the infinitely small. The solution to this [...]
Challenging Previous Beliefs: Japanese Scientists Discover Hidden Protector of Heart
A Japanese research team found that the oxidized form of glutathione (GSSG) may protect heart tissue by modifying a key protein, potentially offering a novel therapeutic approach for ischemic heart failure. A new study [...]
Millions May Have Long COVID – So Why Can’t They Get Diagnosed?
Millions of people in England may be living with Long Covid without even realizing it. A large-scale analysis found that nearly 10% suspect they might have the condition but remain uncertain, often due to [...]
Researchers Reveal What Happens to Your Brain When You Don’t Get Enough Sleep
What if poor sleep was doing more than just making you tired? Researchers have discovered that disrupted sleep in older adults interferes with the brain’s ability to clean out waste, leading to memory problems [...]
How to prevent chronic inflammation from zombie-like cells that accumulate with age
In humans and other multicellular organisms, cells multiply. This defining feature allows embryos to grow into adulthood, and enables the healing of the many bumps, bruises and scrapes along the way. Certain factors can [...]
Breakthrough for long Covid patients who lost sense of smell
A breakthrough nasal surgery has restored the sense of smell for a dozen long Covid patients. Experts at University College London Hospitals NHS Foundation Trust successfully employed a technique typically used for correcting blocked nasal passages, [...]