Scientists have recently developed multifunctional hexagonal NaxWO3 nanocrystals that can serve as microwave sensitizers to kill cancer cells as well as improve the overall chemodynamic therapy (CDT). This study is available as a pre-proof in Chemical Engineering Journal.
Technologies Associated with Clinical Management of Tumors
Some of the thermal ablation technologies, such as radiofrequency ablation (RFA) and microwave ablation (MWA), have been popularly used for the clinical management of tumors. Compared to conventional therapies, thermal ablation therapies involve minimal invasion, shorter duration of hospitalization, lower mortality rate and reduced cost of therapy.
Over the years, MWA has become an alternative method to RFA, because of its higher heating efficiency, deep penetration and, large ablation area. MWA is based on hyperthermia, i.e., above 60℃, which can cause denaturation of protein and, thereby, cause irreversible cellular injury. Importantly, researchers observed that MWA therapy was effective against primary or metastatic tumors associated with lung cancer, liver cancer and breast cancer.
Two of the key limitations of MWA therapy include uneven distribution of heat and quick diffusion; these lead to damaging both malignant as well as surrounding healthy tissues. To overcome this drawback, scientists have developed various microwave sensitizers that can transform microwave electromagnetic energy into thermal energy and accumulate maximum heat at the target site.
Chemodynamic therapy (CDT) is an emerging anticancer therapy based on a Fenton/Fenton-like reaction that produces highly oxidative hydroxyl radicals in cancer cells. However, the development of CDT as a sole cancer treatment has not been possible due to some limitations, such as insufficient catalytic efficiency and unfavorable reaction conditions. Scientists stated that enhancement of temperature could be an effective strategy to improve Fenton/Fenton-like reactions. To date, all the approaches have been based on a photothermal enhancement of CDT, providing an unfavorable low penetration rate for clinical application.
Potential of Hexagonal Tungsten Oxide Nanomaterials for Cancer Therapy
Nanomaterials of tungsten oxide and tungsten bronzes are known to be less toxic, possess many unique properties, and are multifarious crystal structures. Scientists were curious to explore its potential for microwave heating due to some characteristic features of hexagonal tungsten oxide nanomaterials, e.g., large surface area, ions intercalation ability, and tunneled structure. Additionally, the introduction of cations into tungsten oxide makes it a favorable candidate for CDT.
Scientists believe that the combination of CDT and MWA could be an efficient cancer treatment strategy. Keeping this in mind, researchers of the current study thought that exploring flexible redox states of the W element (W5+/W6+) could be ideal for developing a novel W-based nanocrystal required for synergistic antitumor therapy.
In this study, researchers developed hexagonal phase NaxWO3 nanocrystals via hydrothermal processes. These nanocrystals were analyzed for their efficiency as microwave sensitizers as well as a nano-catalyst for microwave thermal-enhanced CDT.
Scientists characterized the newly developed NaxWO3 nanocrystals via scanning electron microscope (SEM), which revealed the presence of rod-shaped nanostructures of 100-150 nm length and 100-150 nm diameter. Researchers observed that cationic ions could readily occupy these hexagonal tunneled nanostructures, which hinted at its potential as a microwave thermal sensitizer. Additionally, the incorporation of polyvinylpyrrolidone (PVP) on the surface of NaxWO3 nanostructures was confirmed via FT-IR analysis. In this study, researchers revealed that PVP-modified NaxWO3 nanorods possessed significant biocompatibility and dispersibility.
Scientists reported that both in vitro and in vivo studies revealed that newly synthesized NaxWO3 nanocrystals exhibited promising thermal effects when subjected to microwave irradiation. This might be due to its tunneled structure and ions intercalation properties that promote the trapping of more ions/polar molecules vibrating in a confined space. Additionally, the flexibly reversible redox nature of W elements allows NaxWO3 nanocrystals to degrade endogenous H2O2 into highly active hydroxyl radical through a Fenton-like reaction. Subsequently, via the redox process, NaxWO3 nanocrystals can also consume the reduced substances, i.e., glutathione (GSH).
Importantly, the high concentration of hydroxyl radical and low level of GSH in the malignant cells, instead of healthy tissues, facilitate selective inhibition of tumor cells via mitochondrial dysfunction, elicited by reactive oxygen species (ROS). Another advantage of this approach has been the application of hyperthermia associated with MWA, which can not only trigger coagulative necrosis in malignant cells but also enhance ROS generation by increasing the catalytic efficiency of NaxWO3 nanocrystals via a Fenton-like reaction.
In this study, researchers also studied the efficacy of NaxWO3 nanocrystals in killing cancer cells using 4T1 cells and HUVEC cells. This study showed that an increase in the concentration of NaxWO3 nanocrystals enhanced cytotoxicity on 4T1 cells, and decreased its viability by 67.8%. This result implies the potential of NaxWO3 nanocrystals in inhibiting the growth of cancer cells without affecting healthy cells (HUVEC cells).
Conclusion
The authors of this study stated that the newly synthesized NaxWO3 nanocrystals, with promising microwave heating ability, improved catalytic performance, and biocompatibility could be effectively applied for antitumor therapy.
News
A Forgotten Molecule Could Revive Failing Antifungal Drugs and Save Millions of Lives
Scientists have uncovered a way to make existing antifungal drugs work again against deadly, drug-resistant fungi. Fungal infections claim millions of lives worldwide each year, and current medical treatments are failing to keep pace. [...]
Scientists Trap Thyme’s Healing Power in Tiny Capsules
A new micro-encapsulation breakthrough could turn thyme’s powerful health benefits into safer, smarter nanodoses. Thyme extract is often praised for its wide range of health benefits, giving it a reputation as a natural medicinal [...]
Scientists Develop Spray-On Powder That Instantly Seals Life-Threatening Wounds
KAIST scientists have created a fast-acting, stable powder hemostat that stops bleeding in one second and could significantly improve survival in combat and emergency medicine. Severe blood loss remains the primary cause of death from [...]
Oceans Are Struggling To Absorb Carbon As Microplastics Flood Their Waters
New research points to an unexpected way plastic pollution may be influencing Earth’s climate system. A recent study suggests that microscopic plastic pollution is reducing the ocean’s capacity to take in carbon dioxide, a [...]
Molecular Manufacturing: The Future of Nanomedicine – New book from Frank Boehm
This book explores the revolutionary potential of atomically precise manufacturing technologies to transform global healthcare, as well as practically every other sector across society. This forward-thinking volume examines how envisaged Factory@Home systems might enable the cost-effective [...]
New Book! NanoMedical Brain/Cloud Interface – Explorations and Implications
New book from Frank Boehm, NanoappsMedical Inc Founder: This book explores the future hypothetical possibility that the cerebral cortex of the human brain might be seamlessly, safely, and securely connected with the Cloud via [...]
Global Health Care Equivalency in the Age of Nanotechnology, Nanomedicine and Artificial Intelligence
A new book by Frank Boehm, NanoappsMedical Inc. Founder. This groundbreaking volume explores the vision of a Global Health Care Equivalency (GHCE) system powered by artificial intelligence and quantum computing technologies, operating on secure [...]
Miller School Researchers Pioneer Nanovanilloid-Based Brain Cooling for Traumatic Injury
A multidisciplinary team at the University of Miami Miller School of Medicine has developed a breakthrough nanodrug platform that may prove beneficial for rapid, targeted therapeutic hypothermia after traumatic brain injury (TBI). Their work, published in ACS [...]
COVID-19 still claims more than 100,000 US lives each year
Centers for Disease Control and Prevention researchers report national estimates of 43.6 million COVID-19-associated illnesses and 101,300 deaths in the US during October 2022 to September 2023, plus 33.0 million illnesses and 100,800 deaths [...]
Nanomedicine in 2026: Experts Predict the Year Ahead
Progress in nanomedicine is almost as fast as the science is small. Over the last year, we've seen an abundance of headlines covering medical R&D at the nanoscale: polymer-coated nanoparticles targeting ovarian cancer, Albumin recruiting nanoparticles for [...]
Lipid nanoparticles could unlock access for millions of autoimmune patients
Capstan Therapeutics scientists demonstrate that lipid nanoparticles can engineer CAR T cells within the body without laboratory cell manufacturing and ex vivo expansion. The method using targeted lipid nanoparticles (tLNPs) is designed to deliver [...]
The Brain’s Strange Way of Computing Could Explain Consciousness
Consciousness may emerge not from code, but from the way living brains physically compute. Discussions about consciousness often stall between two deeply rooted viewpoints. One is computational functionalism, which holds that cognition can be [...]
First breathing ‘lung-on-chip’ developed using genetically identical cells
Researchers at the Francis Crick Institute and AlveoliX have developed the first human lung-on-chip model using stem cells taken from only one person. These chips simulate breathing motions and lung disease in an individual, [...]
Cell Membranes May Act Like Tiny Power Generators
Living cells may generate electricity through the natural motion of their membranes. These fast electrical signals could play a role in how cells communicate and sense their surroundings. Scientists have proposed a new theoretical [...]
This Viral RNA Structure Could Lead to a Universal Antiviral Drug
Researchers identify a shared RNA-protein interaction that could lead to broad-spectrum antiviral treatments for enteroviruses. A new study from the University of Maryland, Baltimore County (UMBC), published in Nature Communications, explains how enteroviruses begin reproducing [...]
New study suggests a way to rejuvenate the immune system
Stimulating the liver to produce some of the signals of the thymus can reverse age-related declines in T-cell populations and enhance response to vaccination. As people age, their immune system function declines. T cell [...]















