Emerging research on nerve repair has consisted of MXenes being used to improve nerve guidance conduits, which would also enhance its subsequent electrical conductivity. This pre-proof research has been submitted in the journal, Additive Manufacturing.
The Need for Advanced Nerve Guidance Conduits
The peripheral nervous system is a little different from the central nervous system in that these nerves have a strong potential for regeneration and this can be through nerve grafting.
Nerve grafting is the gold standard for peripheral nerve injuries that do not have the ability to be bridged through direct epineural suturing.
A nerve guidance conduit can be described as an artificial nerve graft, which is able to guide axonal regrowth for facilitating nerve regeneration, and the use of nerve conduits have been used for decades for the treatment of peripheral nerve injury. The significance of these grafts can be found within the severity of peripheral nerve injuries.
Peripheral nerve injuries are a very significant health problem affecting 2.8% of trauma patients per year and this injury can cause destruction, damage or crushing of the peripheral nerve. This type of disorder can result in changes in sensation, with symptoms such as, decreased sensation that can cause numbness and tingling, as well as burning, shooting, and sharp ‘electrical’ pains.
The peripheral nerve consists of bundles of endoneurium wrapped axons bundled into fascicles that are wrapped in perineurium. The function of Schwann cells provides a myelin sheath that increases the conduction for myelinated nerves.
The main mechanisms behind peripheral nerve injuries can include stretching, compression and transection.
Compression of vascular structures can cause ischemic injury and direct nerve, or myelin compression can also lead to peripheral nerve injury. Additionally, transection, which can consist of cutting the nerve in a partial or complete manner can also lead to this type of injury. This mechanism can affect sensory and motor nerves and affect the quality of life of trauma patients.
The need for a novel and innovative strategy to improve nerve guidance conduits in peripheral nerve repair would enable the reduction of this issue and increase the health of those affected.
Nerve guidance conduits have been used as a bridging substrate that is able to provide temporary mechanical support, in order to allow transected nerves to sprout over the nerve gap, as well as aiding in the inhibition of fibrous tissue infiltration. The use of these conduits has been used commonly as an alternative implant for peripheral nerve repair.
Over recent years, the advancements in this field have consisted of novel materials to develop nerve guidance conduits and this has included poly-L-lactic acid (PLLA) due to its properties such as good biodegradation and processibility. However, its non-electrically conductive material has illustrated its lack of compatibility with reconstructing the conductivity of nerves as it would lead to a lack of electrical signal transduction as well as ineffective coordination of cellular function and nerve regeneration.
These challenges with the use of PLLA have led researchers to look towards other materials and the innovative solutions that nanotechnology provides, such as graphene oxide, gold nanoparticles and MXene.
The researchers of this pre-proof study have utilized MXene, which is a two-dimensional layered transition metal carbide, due to its impressive properties such as superior electrical conductivity as well as carrier mobility. Additionally, this nanomaterial has a remarkably useful surface that is high in hydrophilic functional groups, and this can enhance cell attachment, which further illustrates the potential of MXene as a candidate for fabricating conductive nerve guidance conduits.
This potential of MXene resulted in an innovative experiment consisting of creating effective MXene nanosheets that were coated on the surface of PLLA particles and ultimately produced a three-dimensional continuous conducive network.
This pre-proof research may advance current technology within this field as it enables a continuous pathway for effective and efficient charge transmission, and this could ultimately increase the electrical conductivity levels of current nerve guidance conduits.
Additionally, the use of 3D printing or laser additive manufacturing in this process is significant as it provides the ability to produce precise components of any complex structure through the use of a path-controlled laser beam that is able to fabricate products layer by layer.
The addition of this method for this research ensured that the network structure was retained as well as tight MXene contact which aided in providing a strong path for electronic transmission.
Future Outlook
Advancements such as through this research can be significant for patients with peripheral nerve injury as even with early diagnosis and accurate nerve repair, the functional recovery of this injury may never be the same as before the injury occurred.
The use of this nanotechnology innovation could further biomedical research and possibly change this experience for patients with higher recovery potential.
This study could be used to advance fields such as nanotechnology as well as regenerative medicine and this research can only be furthered through large-scale experimentation in order to evaluate the use of MXene for enhancing nerve cell responses for clinical patient care.

News
Scientist tackles key roadblock for AI in drug discovery
The drug development pipeline is a costly and lengthy process. Identifying high-quality "hit" compounds—those with high potency, selectivity, and favorable metabolic properties—at the earliest stages is important for reducing cost and accelerating the path [...]
Nanoplastics with environmental coatings can sneak past the skin’s defenses
Plastic is ubiquitous in the modern world, and it's notorious for taking a long time to completely break down in the environment - if it ever does. But even without breaking down completely, plastic [...]
Chernobyl scientists discover black fungus feeding on deadly radiation
It looks pretty sinister, but it might actually be incredibly helpful When reactor number four in Chernobyl exploded, it triggered the worst nuclear disaster in history, one which the surrounding area still has not [...]
Long COVID Is Taking A Silent Toll On Mental Health, Here’s What Experts Say
Months after recovering from COVID-19, many people continue to feel unwell. They speak of exhaustion that doesn’t fade, difficulty breathing, or an unsettling mental haze. What’s becoming increasingly clear is that recovery from the [...]
Study Delivers Cancer Drugs Directly to the Tumor Nucleus
A new peptide-based nanotube treatment sneaks chemo into drug-resistant cancer cells, providing a unique workaround to one of oncology’s toughest hurdles. CiQUS researchers have developed a novel molecular strategy that allows a chemotherapy drug to [...]
Scientists Begin $14.2 Million Project To Decode the Body’s “Hidden Sixth Sense”
An NIH-supported initiative seeks to unravel how the nervous system tracks and regulates the body’s internal organs. How does your brain recognize when it’s time to take a breath, when your blood pressure has [...]
Scientists Discover a New Form of Ice That Shouldn’t Exist
Researchers at the European XFEL and DESY are investigating unusual forms of ice that can exist at room temperature when subjected to extreme pressure. Ice comes in many forms, even when made of nothing but water [...]
Nobel-winning, tiny ‘sponge crystals’ with an astonishing amount of inner space
The 2025 Nobel Prize in chemistry was awarded to Richard Robson, Susumu Kitagawa and Omar Yaghi on Oct. 8, 2025, for the development of metal-organic frameworks, or MOFs, which are tunable crystal structures with extremely [...]
Harnessing Green-Synthesized Nanoparticles for Water Purification
A new review reveals how plant- and microbe-derived nanoparticles can power next-gen water disinfection, delivering cleaner, safer water without the environmental cost of traditional treatments. A recent review published in Nanomaterials highlights the potential of green-synthesized nanomaterials (GSNMs) in [...]
Brainstem damage found to be behind long-lasting effects of severe Covid-19
Damage to the brainstem - the brain's 'control center' - is behind long-lasting physical and psychiatric effects of severe Covid-19 infection, a study suggests. Using ultra-high-resolution scanners that can see the living brain in [...]
CT scan changes over one year predict outcomes in fibrotic lung disease
Researchers at National Jewish Health have shown that subtle increases in lung scarring, detected by an artificial intelligence-based tool on CT scans taken one year apart, are associated with disease progression and survival in [...]
AI Spots Hidden Signs of Disease Before Symptoms Appear
Researchers suggest that examining the inner workings of cells more closely could help physicians detect diseases earlier and more accurately match patients with effective therapies. Researchers at McGill University have created an artificial intelligence tool capable of uncovering [...]
Breakthrough Blood Test Detects Head and Neck Cancer up to 10 Years Before Symptoms
Mass General Brigham’s HPV-DeepSeek test enables much earlier cancer detection through a blood sample, creating a new opportunity for screening HPV-related head and neck cancers. Human papillomavirus (HPV) is responsible for about 70% of [...]
Study of 86 chikungunya outbreaks reveals unpredictability in size and severity
The symptoms come on quickly—acute fever, followed by debilitating joint pain that can last for months. Though rarely fatal, the chikungunya virus, a mosquito-borne illness, can be particularly severe for high-risk individuals, including newborns and older [...]
Tiny Fat Messengers May Link Obesity to Alzheimer’s Plaque Buildup
Summary: A groundbreaking study reveals how obesity may drive Alzheimer’s disease through tiny messengers called extracellular vesicles released from fat tissue. These vesicles carry lipids that alter how quickly amyloid-β plaques form, a hallmark of [...]
Ozone exposure weakens lung function and reshapes the oral microbiome
Scientists reveal that short-term ozone inhalation doesn’t just harm the lungs; it reshapes the microbes in your mouth, with men facing the greatest risks. Ozone is a toxic environmental pollutant with wide-ranging effects on [...]