New insights could advance microfluidics and drug delivery systems.
- New study finds obstacles can trap rolling microparticles in fluid
- Through simulations and experiments, physicists attribute the trapping effect to stagnant pockets of fluid, created by hydrodynamics
- Random motions of the molecules within the fluid then ‘kick’ the microroller into a stagnant pocket, effectively trapping it
- Size of the obstacle also controls how easy it is to trap a microroller and how long it remains trapped
When physicists steered a tiny microparticle toward a cylindrical obstacle, they expected one of two outcomes to occur. The particle would either collide into the obstacle or sail around it. The particle, however, did neither.
The researcher team — led by Northwestern University and École Polytechnique in France — was surprised and puzzled to watch the particle curve around the obstacle and then stick to its backside. The obstacle, it seemed, had the particle effectively trapped.
After a series of simulations and experiments, the researchers unraveled the physics at play behind this strange phenomenon. Three factors caused the unexpected trapping behavior: electrostatics, hydrodynamics, and erratic random movement of the surrounding molecules. The size of the obstacle also determined how long the particle remained trapped before escaping.
The study will be published on March 8 in the journal Science Advances.
“I didn’t expect to see trapping in this system at all,” said Northwestern’s Michelle Driscoll, who co-led the study. “But trapping adds a lot of utility to the system because now we have a way to gather up particles. Tasks like trapping, mixing and sorting are very difficult to do at such small scales. You can’t just scale down standard processes for mixing and sorting because a different kind of physics kicks in at this size limit. So, it’s important to have different ways to manipulate particles.”
Driscoll is an assistant professor of physics at Northwestern’s Weinberg College of Arts and Sciences. She co-led the study with Blaise Delmotte, a researcher at École Polytechnique.
Similar in size to bacteria, microrollers are synthetic, microscopic particles with the ability to move in a fluid environment. Driscoll and her team are particularly interested in microrollers for their ability to move freely — and quickly — in different directions and their potential to carry and deliver cargo in complex, confined environments, including within the human body.
The microrollers in Driscoll’s lab are plastic with an iron oxide core, which gives them a weak magnetic field. By putting the microrollers in a sealed microchamber (100 millimeters by 2 millimeters by 0.1 millimeters in size), researchers can control the direction they move by manipulating a rotating magnetic field around the sample. To change the way the microrollers move, researchers simply reprogram the motion of the magnetic field to pull the microrollers in different directions.
But microfluidic devices and the human body are, of course, much more complex landscapes compared to a featureless sample chamber. So, Driscoll and her collaborators added obstacles to the system to see how microrollers could navigate the environment.
“For true-to-life applications, you aren’t just going to have this system with particles sitting in an open space,” Driscoll said. “It’s going to be a complex landscape. You might have to move the particles through winding channels. So, we wanted to first explore the simplest version of the problem: One microroller and one obstacle.”
In both computer simulations and the experimental environment, Driscoll and her team added cylindrical obstacles to the sample chamber. Sometimes the microroller sailed around the obstacle without issue, but other times it would swing around the obstacle and then get trapped behind it.
“We watched the particle stop moving past the obstacle and kind of get stuck,” Driscoll said. “We saw the same behavior in the simulations and in the experiments.”
By changing the parameters within the simulations and analyzing the data, Driscoll and her team found the hydrodynamics of the fluid inside the sample chamber created stagnant areas. In other words, the spinning microroller caused the fluid to flow in the chamber. But the flows also created pockets — including one directly behind the obstacle — where the fluid remained still and unflowing. When the particle entered the stagnant area, it stopped moving and became stuck.
But to reach the stagnant area, the particle had to perform a baffling U-turn. After moving past the obstacle, the microroller curved around it, becoming stuck to its backside. Driscoll found that random motions (called Brownian motion) of the molecules within the fluid “kicked” the microroller into the stagnant area.
“Tiny materials are subject to Brownian fluctuations,” Driscoll explained. “The fluid is not actually a continuum but is composed of individual, little molecules. Those molecules are constantly ramming into the particle at random orientations. If the particle is small enough, these collisions can move it. That’s why if you look at tiny particles under a microscope, they look like they are juggling around a little bit.”
Driscoll’s team also found that the size of the obstacle controls how long the particle will remain trapped before escaping. For example, it’s easier for Brownian fluctuations to kick the particle into the trapping region when the obstacle is smaller. By changing the obstacle size, researchers can increase the trapping time by orders of magnitude.
“Usually, Brownian fluctuations are destructive to experiments because they are a source of noise,” Driscoll said. “Here, we can leverage Brownian motion to do something useful. We can enable this hydrodynamic trapping effect.”
News
False Memories Under Fire: Surprising Science Behind What We Really Recall
New research challenges the ease of implanting false memories, highlighting flaws in the influential “Lost in the Mall” study. By reexamining the data from a previous study, researchers found that many supposed false memories [...]
Born Different? Cambridge Scientists Uncover Innate Sex Differences in Brains
Cambridge researchers found that sex differences in brain structure exist from birth, with males having more white matter and females more grey matter, highlighting early neurodiversity. Research from the Autism Research Centre at the University [...]
New study shows risk factors for dementia – virus causes deposits in the brain
Research into the causes of Alzheimer's is not yet complete. Now a new study shows that head trauma can activate herpes viruses and promote the disease. Frankfurt am Main – As a neurodegenerative disease, [...]
Are Machines Truly Thinking? Modern AI Systems Have Finally Achieved Turing’s Vision
Modern AI systems have fulfilled Turing’s vision of machines that learn and converse like humans, but challenges remain. A new paper highlights concerns about energy consumption and societal inequality while calling for more robust [...]
The Surprising Link Between Smell, Sound, and Emotions
New research reveals how smell and hearing interact in the brain to drive social behavior, using mouse maternal instincts as a model. Imagine you’re at a dinner party, but you can’t smell the food [...]
Brain cells age at different rates
As our body ages, not only joints, bones and muscles wear out, but also our nervous system. Nerve cells die, are no longer fully replaced, and the brain shrinks. "Aging is the most important risk factor [...]
Long COVID Breakthrough: Spike Proteins Persist in Brain for Years
Researchers have discovered that the SARS-CoV-2 spike protein persists in the brain and skull bone marrow for years after infection, potentially leading to chronic inflammation and neurodegenerative diseases. Researchers from Helmholtz Munich and Ludwig-Maximilians-Universität (LMU) have [...]
Water-Resistant Paper Could Revolutionize Packaging and Replace Plastic
A groundbreaking study showcases the creation of sustainable hydrophobic paper, enhanced by cellulose nanofibres and peptides, presenting a biodegradable alternative to petroleum-based materials, with potential uses in packaging and biomedical devices. Researchers aimed to [...]
NIH Scientists Discover Game-Changing Antibodies Against Malaria
Novel antibodies have the potential to pave the way for the next generation of malaria interventions. Researchers at the National Institutes of Health (NIH) have identified a novel class of antibodies that target a previously unexplored region [...]
Surprising Discovery: What If Some Cancer Genes Are Actually Protecting You?
A surprising discovery reveals that a gene previously thought to accelerate esophageal cancer actually helps protect against it initially. This pivotal study could lead to better prediction and prevention strategies tailored to individual genetic [...]
The Cancer Test That Exposes What Conventional Scans Miss
Researchers at UCLA have unveiled startling findings using PSMA-PET imaging that reveal nearly half of patients diagnosed with high-risk prostate cancer might actually have metastases missed by traditional imaging methods. This revelation could profoundly affect future [...]
Pupil size in sleep reveals how memories are processed
Cornell University researchers have found that the pupil is key to understanding how, and when, the brain forms strong, long-lasting memories. By studying mice equipped with brain electrodes and tiny eye-tracking cameras, the researchers [...]
Stanford’s Vaccine Breakthrough Boosts Flu Protection Like Never Before
Stanford Medicine researchers have developed a new method for influenza vaccination that encourages a robust immune response to all four common flu subtypes, potentially increasing the vaccine’s efficacy. In laboratory tests using human tonsil [...]
Water’s Worst Nightmare: The Rise of Superhydrophobic Materials
New materials with near-perfect water repellency offer potential for self-cleaning surfaces in cars and buildings. Scientists from Karlsruhe Institute of Technology (KIT) and the Indian Institute of Technology Guwahati (IITG) have developed a surface [...]
Japanese dentists test drug to help people with missing teeth regrow new ones
Japanese dentists are testing a groundbreaking drug that could enable people with missing teeth to grow new ones, reducing the need for dentures and implants, AFP recently reported. Katsu Takahashi, head of oral surgery at [...]
An AI system has reached human level on a test for ‘general intelligence’
A new artificial intelligence (AI) model has just achieved human-level results on a test designed to measure "general intelligence." On December 20, OpenAI's o3 system scored 85% on the ARC-AGI benchmark, well above the previous AI best [...]