Stefan Wilhelm, an associate professor in the Stephenson School of Biomedical Engineering at the University of Oklahoma, and several students in his Biomedical Nano-Engineering Lab have recently published an article in the journal Nano Letters that outlines their recent important nanomedicine advancement.
Wilhelm, with student researchers such as Hamilton Young, a senior biomedical engineering student, and Yuxin He, a biomedical engineering graduate research assistant, used 3D printer parts to mix fluid streams together containing the building blocks of nanomedicines and their payloads in a T-mixer format.
“This mixing device is essentially a T-shaped piece of tubing that forces two fluid streams to flow into each other, mixing nanomaterial and payload components together. Once mixed, the final product would exit through the other end,” Wilhelm said. “This mixing concept is used in industrial processes, so we wondered if we could make these devices as cost-efficient as possible.”
The team discovered a publication from a European research group that demonstrated that commercially available 3D printers could be reassembled into syringe pumps needed to push the fluids through the T-mixer device. Once built, they tried to produce nanomedicines with their 3D-built T-mixer.
“We were focusing on formulations that are used in the clinic, such as mRNA lipid nanoparticles, liposomes, and polymeric nanoparticles. One of the molecules we used was developed by a collaborator at OU Health Sciences to limit prostate cancer cell growth,” Wilhelm said. “We encapsulated this molecule into our nanomedicine formulations and showed that it actually stops those prostate cancer cells from growing.”

Based on this example, the team’s research has potentially broad implications for novel cancer therapies and vaccines against infectious diseases, as mRNA technology is already being used in clinical trials for personalized cancer vaccines.
“All of this mRNA technology relies on nanotechnology. mRNA molecules degrade too fast in the body to be effective without encapsulating them in nanoparticles,” Wilhelm said. “This process could open up a bright future for nanotechnology in medicine and will hopefully greatly improve health care.”
Wilhelm also foresees a future where doctors’ offices and clinics in rural communities with limited resources could use this technology to create personalized vaccines. His work with B4NANO, a partnership and outreach program with Native American tribes and communities in Oklahoma, inspires this goal.
“I could see a future situation where a patient walks into a doctor’s office with an infectious disease —possibly cancer. After a diagnosis by the doctor, a vaccine is produced at the doctor’s office in a manner similar to how a single-serve coffee maker works—you just put in your capsules, press a button, and get a personalized vaccine for that patient,” Wilhelm said. “Our goal is to develop this kind of benchtop device and then hopefully find industry partners to commercialize systems like these.”
Another goal Wilhelm has is training the next generation of biomedical engineers, like Young and He, to solve challenges in health care.
“The challenges we face in biomedical engineering require that we have a diverse team, with people coming from all different kinds of backgrounds. Everybody brings in their unique perspective, unique skill sets,” Wilhelm said. “My lab places a lot of emphasis on working with undergraduate students, even high school students, and bridging the gap from undergraduates to graduate students to postdocs. They learn from each other and learn to mentor each other.”
More information: Hamilton Young et al, Toward the Scalable, Rapid, Reproducible, and Cost-Effective Synthesis of Personalized Nanomedicines at the Point of Care, Nano Letters (2024). DOI: 10.1021/acs.nanolett.3c04171
News
Fake Science Is Growing Faster Than Legitimate Research, New Study Warns
New research reveals organized networks linking paper mills, intermediaries, and compromised academic journals Organized scientific fraud is becoming increasingly common, ranging from fabricated research to the buying and selling of authorship and citations, according [...]
Scientists Unlock a New Way to Hear the Brain’s Hidden Language
Scientists can finally hear the brain’s quietest messages—unlocking the hidden code behind how neurons think, decide, and remember. Scientists have created a new protein that can capture the incoming chemical signals received by brain [...]
Does being infected or vaccinated first influence COVID-19 immunity?
A new study analyzing the immune response to COVID-19 in a Catalan cohort of health workers sheds light on an important question: does it matter whether a person was first infected or first vaccinated? [...]
We May Never Know if AI Is Conscious, Says Cambridge Philosopher
As claims about conscious AI grow louder, a Cambridge philosopher argues that we lack the evidence to know whether machines can truly be conscious, let alone morally significant. A philosopher at the University of [...]
AI Helped Scientists Stop a Virus With One Tiny Change
Using AI, researchers identified one tiny molecular interaction that viruses need to infect cells. Disrupting it stopped the virus before infection could begin. Washington State University scientists have uncovered a method to interfere with a key [...]
Deadly Hospital Fungus May Finally Have a Weakness
A deadly, drug-resistant hospital fungus may finally have a weakness—and scientists think they’ve found it. Researchers have identified a genetic process that could open the door to new treatments for a dangerous fungal infection [...]
Fever-Proof Bird Flu Variant Could Fuel the Next Pandemic
Bird flu viruses present a significant risk to humans because they can continue replicating at temperatures higher than a typical fever. Fever is one of the body’s main tools for slowing or stopping viral [...]
What could the future of nanoscience look like?
Society has a lot to thank for nanoscience. From improved health monitoring to reducing the size of electronics, scientists’ ability to delve deeper and better understand chemistry at the nanoscale has opened up numerous [...]
Scientists Melt Cancer’s Hidden “Power Hubs” and Stop Tumor Growth
Researchers discovered that in a rare kidney cancer, RNA builds droplet-like hubs that act as growth control centers inside tumor cells. By engineering a molecular switch to dissolve these hubs, they were able to halt cancer [...]
Platelet-inspired nanoparticles could improve treatment of inflammatory diseases
Scientists have developed platelet-inspired nanoparticles that deliver anti-inflammatory drugs directly to brain-computer interface implants, doubling their effectiveness. Scientists have found a way to improve the performance of brain-computer interface (BCI) electrodes by delivering anti-inflammatory drugs directly [...]
After 150 years, a new chapter in cancer therapy is finally beginning
For decades, researchers have been looking for ways to destroy cancer cells in a targeted manner without further weakening the body. But for many patients whose immune system is severely impaired by chemotherapy or radiation, [...]
Older chemical libraries show promise for fighting resistant strains of COVID-19 virus
SARS‑CoV‑2, the virus that causes COVID-19, continues to mutate, with some newer strains becoming less responsive to current antiviral treatments like Paxlovid. Now, University of California San Diego scientists and an international team of [...]
Lower doses of immunotherapy for skin cancer give better results, study suggests
According to a new study, lower doses of approved immunotherapy for malignant melanoma can give better results against tumors, while reducing side effects. This is reported by researchers at Karolinska Institutet in the Journal of the National [...]
Researchers highlight five pathways through which microplastics can harm the brain
Microplastics could be fueling neurodegenerative diseases like Alzheimer's and Parkinson's, with a new study highlighting five ways microplastics can trigger inflammation and damage in the brain. More than 57 million people live with dementia, [...]
Tiny Metal Nanodots Obliterate Cancer Cells While Largely Sparing Healthy Tissue
Scientists have developed tiny metal-oxide particles that push cancer cells past their stress limits while sparing healthy tissue. An international team led by RMIT University has developed tiny particles called nanodots, crafted from a metallic compound, [...]
Gold Nanoclusters Could Supercharge Quantum Computers
Researchers found that gold “super atoms” can behave like the atoms in top-tier quantum systems—only far easier to scale. These tiny clusters can be customized at the molecular level, offering a powerful, tunable foundation [...]















