Engineers at the University of California San Diego have developed an experimental vaccine that could prevent the spread of metastatic cancers to the lungs. The key ingredients of the vaccine are nanoparticles—fashioned from bacterial viruses—that have been engineered to target a protein known to play a central role in cancer growth and spread.
Metastasis is a process involving the migration of cancer cells from their primary site to other parts of the body. Recent studies have identified S100A9, a protein typically released by immune cells, as a key player in this process. Its normal role is to regulate inflammation. However, an excess of S100A9 can attract cancer cells like a magnet, causing them to form aggressive tumors and facilitating their spread to other organs, such as the lungs.
A team led by Nicole Steinmetz, a professor of nanoengineering at the UC San Diego Jacobs School of Engineering, developed a vaccine candidate that can modulate the levels of S100A9 when it goes haywire. When injected subcutaneously, the vaccine stimulated the immune system in mice to produce antibodies against S100A9, effectively reducing the protein levels and minimizing cancer metastasis to the lungs. The vaccine also increased the expression of immune-stimulating proteins with anti-tumor properties, while decreasing the levels of immune-suppressing proteins.
“S100A9 is known to form what is called a premetastatic niche within the lungs, creating an immunosuppressive environment that allows for tumor seeding and growth,” said study first author Young Hun (Eric) Chung, a UC San Diego bioengineering Ph.D. alumnus from Steinmetz’s lab. “By reducing S100A9 levels, we can effectively counteract the formation of this premetastatic niche, leading to a reduced attraction and increased clearance of cancer cells to the lungs.”
“This is a clever, new approach to vaccination in that we are not targeting tumor cells, but rather the tumor microenvironment so that it prevents the primary tumor from making new tumors,” said Steinmetz, who is the founding director of the UC San Diego Center for Nano-ImmunoEngineering and co-lead of the university’s Materials Research Science and Engineering Center (MRSEC). “We are essentially changing the whole immune system to be more anti-tumor.”
How it works
The vaccine consists of nanoparticles made from a bacterial virus called Q beta. The nanoparticles were grown from E. coli bacteria and isolated. Afterwards, a piece of the S100A9 protein was attached to the surface.
How it works is that the Q beta virus nanoparticles act as bait for the immune system. This virus is harmless to animals and humans, but immune cells recognize it as foreign and get fired up to attack to search for a pathogen. When the immune cells see that the virus nanoparticles display a piece of the S100A9 protein, they produce antibodies to go after that protein.
An advantage of using antibodies, Steinmetz noted, is that they help keep the levels of the target protein in check.
“With this form of immunotherapy, we are not necessarily knocking out all of the protein, but we are reducing the levels everywhere,” said Steinmetz.
Testing the vaccine candidate
The vaccine was tested in metastatic mouse models of melanoma and triple-negative breast cancer, an aggressive and hard-to-treat cancer type. Healthy mice were first administered the vaccine, then challenged with either melanoma or triple-negative breast cancer cells through intravenous injection. Vaccinated mice exhibited a significant reduction in lung tumor growth compared to unvaccinated mice. In unvaccinated mice, the injected cancer cells circulated throughout the body and eventually homed in on the lungs to form metastatic tumors.
The researchers note that this vaccine strategy combats tumor spread, not the primary tumor itself.
“While S100A9 does get overexpressed in certain primary tumors, it is mainly indicated in metastatic disease and progression,” said Chung. “The protein is involved in the formation of immunosuppressive tumor microenvironments. Therefore, we found that our vaccine is much more effective at reducing metastasis, and not in reducing the growth of the primary tumors.”
Another set of experiments demonstrated the vaccine’s potential to offer protection against cancer metastasis after surgical removal of the primary tumor. Mice with triple-negative breast cancer tumors who received the vaccine post-surgery demonstrated an 80% survival rate, while 30% of unvaccinated mice survived after surgery.
“These findings are the most clinically relevant, as they closely model what could happen in real-life scenarios,” said Steinmetz. “For instance, a patient diagnosed with an aggressive cancer who undergoes surgery to remove their tumor may be at risk of recurrence and metastasis to the lungs. We envision that this vaccine could be administered post-surgery to prevent such recurrence and outgrowth of metastatic disease.”
Next steps
Before the vaccine can progress to human trials, more comprehensive safety studies are needed.
“S100A9 is an endogenous protein within the lungs, and there aren’t a lot of data out there that demonstrate what happens when S100A9 is abolished,” said Chung. “We know that S100A9 is important in the clearance of pathogens, and future studies should better test whether reducing S100A9 levels decreases the patient’s ability to fight infections, especially in cancer patients who may have weakened immune systems.”
Future work will also explore the vaccine’s effectiveness when combined with other cancer therapies, with the aim of improving its efficacy against hard-to-treat cancers.
More information: Young Hun Chung et al, Viral nanoparticle vaccines against S100A9 reduce lung tumor seeding and metastasis, Proceedings of the National Academy of Sciences (2023). DOI: 10.1073/pnas.2221859120
Journal information: Proceedings of the National Academy of Sciences
News
Are Machines Truly Thinking? Modern AI Systems Have Finally Achieved Turing’s Vision
Modern AI systems have fulfilled Turing’s vision of machines that learn and converse like humans, but challenges remain. A new paper highlights concerns about energy consumption and societal inequality while calling for more robust [...]
The Surprising Link Between Smell, Sound, and Emotions
New research reveals how smell and hearing interact in the brain to drive social behavior, using mouse maternal instincts as a model. Imagine you’re at a dinner party, but you can’t smell the food [...]
Brain cells age at different rates
As our body ages, not only joints, bones and muscles wear out, but also our nervous system. Nerve cells die, are no longer fully replaced, and the brain shrinks. "Aging is the most important risk factor [...]
Long COVID Breakthrough: Spike Proteins Persist in Brain for Years
Researchers have discovered that the SARS-CoV-2 spike protein persists in the brain and skull bone marrow for years after infection, potentially leading to chronic inflammation and neurodegenerative diseases. Researchers from Helmholtz Munich and Ludwig-Maximilians-Universität (LMU) have [...]
Water-Resistant Paper Could Revolutionize Packaging and Replace Plastic
A groundbreaking study showcases the creation of sustainable hydrophobic paper, enhanced by cellulose nanofibres and peptides, presenting a biodegradable alternative to petroleum-based materials, with potential uses in packaging and biomedical devices. Researchers aimed to [...]
NIH Scientists Discover Game-Changing Antibodies Against Malaria
Novel antibodies have the potential to pave the way for the next generation of malaria interventions. Researchers at the National Institutes of Health (NIH) have identified a novel class of antibodies that target a previously unexplored region [...]
Surprising Discovery: What If Some Cancer Genes Are Actually Protecting You?
A surprising discovery reveals that a gene previously thought to accelerate esophageal cancer actually helps protect against it initially. This pivotal study could lead to better prediction and prevention strategies tailored to individual genetic [...]
The Cancer Test That Exposes What Conventional Scans Miss
Researchers at UCLA have unveiled startling findings using PSMA-PET imaging that reveal nearly half of patients diagnosed with high-risk prostate cancer might actually have metastases missed by traditional imaging methods. This revelation could profoundly affect future [...]
Pupil size in sleep reveals how memories are processed
Cornell University researchers have found that the pupil is key to understanding how, and when, the brain forms strong, long-lasting memories. By studying mice equipped with brain electrodes and tiny eye-tracking cameras, the researchers [...]
Stanford’s Vaccine Breakthrough Boosts Flu Protection Like Never Before
Stanford Medicine researchers have developed a new method for influenza vaccination that encourages a robust immune response to all four common flu subtypes, potentially increasing the vaccine’s efficacy. In laboratory tests using human tonsil [...]
Water’s Worst Nightmare: The Rise of Superhydrophobic Materials
New materials with near-perfect water repellency offer potential for self-cleaning surfaces in cars and buildings. Scientists from Karlsruhe Institute of Technology (KIT) and the Indian Institute of Technology Guwahati (IITG) have developed a surface [...]
Japanese dentists test drug to help people with missing teeth regrow new ones
Japanese dentists are testing a groundbreaking drug that could enable people with missing teeth to grow new ones, reducing the need for dentures and implants, AFP recently reported. Katsu Takahashi, head of oral surgery at [...]
An AI system has reached human level on a test for ‘general intelligence’
A new artificial intelligence (AI) model has just achieved human-level results on a test designed to measure "general intelligence." On December 20, OpenAI's o3 system scored 85% on the ARC-AGI benchmark, well above the previous AI best [...]
According to Researchers, Your Breathing Patterns Could Hold the Key to Better Memory
Breathing synchronizes brain waves that support memory consolidation. A new study from Northwestern Medicine reports that, much like a conductor harmonizes various instruments in an orchestra to create a symphony, breathing synchronizes hippocampal brain waves to [...]
The Hidden Culprit Behind Alzheimer’s Revealed: Microglia Under the Microscope
Researchers at the CUNY Graduate Center have made a groundbreaking discovery in Alzheimer’s disease research, identifying a critical link between cellular stress in the brain and disease progression. Their study focuses on microglia, the brain’s immune [...]
“Mirror Bacteria” Warning: A New Kind of Life Could Pose a Global Threat
Mirror life, a concept involving synthetic organisms with reversed molecular structures, carries significant risks despite its potential for medical advancements. Experts warn that mirror bacteria could escape natural biological controls, potentially evolving to exploit [...]