Although combining radiation therapy (RT) with immune checkpoint blockade (ICB) could activate an in situ vaccine effect, RT limits the tumor antigen presentation and cannot overcome suppressive mechanisms in the tumor microenvironment (TME), limiting the vaccine effect.
An article published in the journal Nature Communications presented a solution to overcome the above challenges by developing PIC multifunctional nanoparticles based on poly-(L-lysine) (PLL), CpG oligodeoxynucleotide (CpG), and iron oxide nanoparticles (ION). The designed nanoparticles served as radiation sensitizers, improved the tumor antigen presentation, increased the M1:M2 ratio of tumor-associated macrophages, and enhanced the stimulation of a type I interferon response combined with RT.
The therapy using the combination of RT, PIC nanoparticles, and ICB in immunologically “cold” murine tumor models improved the tumor response, increased the survival rate, and activated the tumor-specific immune memory. Utilizing the designed PIC nanoparticles in RT evoked the in situ vaccine effect, potentiated adaptive anti-tumor immunity, and augmented the response to ICB and other potential immunotherapies.
Role of Nanoparticles in Cancer Immunotherapy
Despite the success of cancer immunotherapy, patients with immunologically “cold” tumors are less likely to respond to ICB therapy. The “cold” tumors are characterized by limited immune cell infiltration and low neoantigen load. The in situ cancer vaccination converts a patient’s tumor into a nidus to present tumor-specific antigens and to stimulate and diversify anti-tumor T cell response. Thus, improving the response rates of immunologically “cold” tumors.
At least half of cancer patients receive RT at some point in their cancer treatment which helps in activating the in situ vaccine response. RT stimulates the immunogenic cell apoptosis, increases tumor infiltration by immune cells, and enhances the immune-mediated killing of tumor cells. Although RT may induce many favorable effects in the tumor microenvironment (TME), it may also lead to detrimental effects on cells due to a lack of specificity.
Due to the development of nanotechnology, nanomaterials with heavy metals showed promising radio-sensitization to enhance the favorable RT outcomes, such as gold and silver nanoparticles, which can efficiently absorb, scatter, emit radiation energy, and are easily eliminated by metabolism. Recently, cancer immunotherapy has emerged as a promising treatment, and immune checkpoint regulation has the potential property to improve clinical outcomes in cancer immunotherapy.
Multifunctional Nanoparticles to Potentiate the In Situ Vaccination Effect
The cancer immunotherapy resistant “cold” tumors are characterized by low tumor neoantigen load, few tumor-infiltrating effector T cells, and activation of immune suppressive mechanisms in TME. Previously conducted clinical studies confirmed the safe combination of RT and ICB in improving response and survival rate, particularly in patients with “cold” tumors.
Besides the above advantages, RT was also reported to cause detrimental local effects on the TME. To increase the capacity of RT in eliciting in situ vaccination, the combination of RT with the therapeutic agent was hypothesized to augment the effect of RT in activating T-cell immunity.
In the present work, PIC nanoparticles were designed to improve the in situ vaccine effect of RT, facilitate anticancer response against “cold” tumors, and increase their response to ICBs. The results suggested that this approach could offer an effective strategy that permits the use of off-the-shelf treatment in realizing in situ vaccine effect. Here a patient’s tumor is transformed into nidus to present tumor-specific antigens, stimulating and diversifying the anti-tumor T cell response against the patient’s cancer cells.
Additionally, combining anti-CTLA-4 with PIC nanoparticles and RT in situ vaccination showed greater tumor response, improving the survival rate and tumor-specific immune memory compared to RT or PIC nanoparticles or combined treatment. Moreover, the mouse model treated with PIC nanoparticles + RT or PIC nanoparticles + RT + anti-CTLA-4 did not show any hepatic, gastrointestinal, renal, or autoimmune toxicities, confirming the biosafety of the proposed strategy.
Conclusion
To summarize, the present work demonstrated that the designed PIC nanoparticles had the advantages of reproducibility and scalability. Following RT, the nanoparticles modulated the tumor-immune microenvironment, favoring the activation of an in situ vaccine effect.
Immunotherapies and ICBs are extensively used to treat cancer patients. However, the limiting response of “cold” cancers to these therapies was an issue of concern. The multifunctional PIC nanoparticles resolved the above issue by potentiating the vaccination effect and augmenting the response rate of “cold” cancers to ICBs.
Thus, the results confirmed the promising application of PIC nanoparticles in combination with ICB and RT and its translation to the preclinical and early phases of clinical trials in treating metastatic cancers.

News
Scientists Invent Plastic That Can Dissolve In Seawater In Just A Few Hours
Plastic waste and pollution in the sea have been among the most serious environmental problems for decades, causing immense damage to marine life and ecosystems. However, a breakthrough discovery may offer a game-changing solution. [...]
Muscles from the 3D printer
Swiss researchers have developed a method for printing artificial muscles out of silicone. In the future, these could be used on both humans and robots. Swiss researchers have succeeded in printing artificial muscles out [...]
Beneficial genetic changes observed in regular blood donors
Researchers at the Francis Crick Institute have identified genetic changes in blood stem cells from frequent blood donors that support the production of new, non-cancerous cells. Understanding the differences in the mutations that accumulate [...]
Shocking Amounts of Microplastics in the Brain – It Could Be Increasing Our Risk of Dementia
The brain has higher concentrations of plastic particles compared to other organs, with increased levels found in dementia patients. In a comprehensive commentary published in Brain Medicine, researchers highlight alarming new evidence of microplastic accumulation [...]
Baffling Scientists for Centuries: New Study Unravels Mystery of Static Electricity
ISTA physicists demonstrate that contact electrification depends on the contact history of materials. For centuries, static electricity has intrigued and perplexed scientists. Now, researchers from the Waitukaitis group at the Institute of Science and [...]
Tumor “Stickiness” – Scientists Develop Potential New Way To Predict Cancer’s Spread
UC San Diego researchers have developed a device that predicts breast cancer aggressiveness by measuring tumor cell adhesion. Weakly adherent cells indicate a higher risk of metastasis, especially in early-stage DCIS. This innovation could [...]
Scientists Just Watched Atoms Move for the First Time Using AI
Scientists have developed a groundbreaking AI-driven technique that reveals the hidden movements of nanoparticles, essential in materials science, pharmaceuticals, and electronics. By integrating artificial intelligence with electron microscopy, researchers can now visualize atomic-level changes that were [...]
Scientists Sound Alarm: “Safe” Antibiotic Has Led to an Almost Untreatable Superbug
A recent study reveals that an antibiotic used for liver disease patients may increase their risk of contracting a dangerous superbug. An international team of researchers has discovered that rifaximin, a commonly prescribed antibiotic [...]
Scientists Discover Natural Compound That Stops Cancer Progression
A discovery led by OHSU was made possible by years of study conducted by University of Portland undergraduates. Scientists have discovered a natural compound that can halt a key process involved in the progression [...]
Scientists Just Discovered an RNA That Repairs DNA Damage – And It’s a Game-Changer
Our DNA is constantly under threat — from cell division errors to external factors like sunlight and smoking. Fortunately, cells have intricate repair mechanisms to counteract this damage. Scientists have uncovered a surprising role played by [...]
What Scientists Just Discovered About COVID-19’s Hidden Death Toll
COVID-19 didn’t just claim lives directly—it reshaped mortality patterns worldwide. A major international study found that life expectancy plummeted across most of the 24 analyzed countries, with additional deaths from cardiovascular disease, substance abuse, and mental [...]
Self-Propelled Nanoparticles Improve Immunotherapy for Non-Invasive Bladder Cancer
A study led by Pohang University of Science and Technology (POSTECH) and the Institute for Bioengineering of Catalonia (IBEC) in South Korea details the creation of urea-powered nanomotors that enhance immunotherapy for bladder cancer. The nanomotors [...]
Scientists Develop New System That Produces Drinking Water From Thin Air
UT Austin researchers have developed a biodegradable, biomass-based hydrogel that efficiently extracts drinkable water from the air, offering a scalable, sustainable solution for water access in off-grid communities, emergency relief, and agriculture. Discarded food [...]
AI Unveils Hidden Nanoparticles – A Breakthrough in Early Disease Detection
Deep Nanometry (DNM) is an innovative technique combining high-speed optical detection with AI-driven noise reduction, allowing researchers to find rare nanoparticles like extracellular vesicles (EVs). Since EVs play a role in disease detection, DNM [...]
Inhalable nanoparticles could help treat chronic lung disease
Nanoparticles designed to release antibiotics deep inside the lungs reduced inflammation and improved lung function in mice with symptoms of chronic obstructive pulmonary disease By Grace Wade Delivering medication to the lungs with inhalable nanoparticles [...]
New MRI Study Uncovers Hidden Lung Abnormalities in Children With Long COVID
Long COVID is more than just lingering symptoms—it may have a hidden biological basis that standard medical tests fail to detect. A groundbreaking study using advanced MRI technology has uncovered significant lung abnormalities in [...]