How does the immune system fight pathogens?
The immune system has two distinct components: mucosal and circulatory.
The mucosal immune system provides protection at the mucosal surfaces of the body. These include the mouth, eyes, middle ear, the mammary and other glands, and the gastrointestinal, respiratory, and urogenital tracts. Antibodies and a variety of other anti-microbial proteins in the sticky secretions that cover these surfaces, as well as immune cells located in the lining of these surfaces, directly attack invading pathogens.
What are the key players in mucosal immunity?
The immune components people may be most familiar with are proteins known as antibodies, or immunoglobulins. The immune system generates antibodies in response to invading agents that the body identifies as “non-self,” such as viruses and bacteria.
Antibodies bind to specific antigens: the part or product of a pathogen that induces an immune response. Binding to antigens allows antibodies to either inactivate them, as they do with toxins and viruses, or kill bacteria with the help of additional immune proteins or cells.
The mucosal immune system generates a specialized form of antibody called secretory IgA, or SIgA. Because SIgA is located in mucosal secretions, such as saliva, tears, nasal and intestinal secretions, and breast milk, it is resistant to digestive enzymes that readily destroy other forms of antibodies. It is also superior to most other immunoglobulins at neutralizing viruses and toxins, and at preventing bacteria from attaching to and invading the cells lining the surfaces of organs.
There are also many other key players in the mucosal immune system, including different types of anti-microbial proteins that kill pathogens, as well as immune cells that generate antibody responses.
How does the COVID-19 virus enter the body?
Almost all infectious diseases in people and other animals are acquired through mucosal surfaces, such as by eating or drinking, breathing or sexual contact. Major exceptions include infections from wounds, or pathogens delivered by insect or tick bites.
The virus that causes COVID-19, SARS-CoV-2, enters the body via droplets or aerosols that get into your nose, mouth, or eyes. It can cause severe disease if it descends deep into the lungs and causes an overactive, inflammatory immune response.
This means that the virus’s first contact with the immune system is probably through the surfaces of the nose, mouth, and throat. This is supported by the presence of SIgA antibodies against SARS-CoV-2 in the secretions of infected people, including their saliva, nasal fluid, and tears. These locations, especially the tonsils, have specialized areas that specifically trigger mucosal immune responses.
Some research suggests that if these SIgA antibody responses form as a result of vaccination or prior infection, or occur quickly enough in response to a new infection, they could prevent serious disease by confining the virus to the upper respiratory tract until it is eliminated.
How do nasal vaccines work?
Vaccines can be given through mucosal routes via the mouth or nose. This induces an immune response through areas that stimulate the mucosal immune system, leading mucosal secretions to produce SIgA antibodies.
There are several existing mucosal vaccines, most of them taken by mouth. Currently, only one, the flu vaccine, is delivered nasally.
In the case of nasal vaccines, the viral antigens intended to stimulate the immune system would be taken up by immune cells within the lining of the nose or tonsils. While the exact mechanisms by which nasal vaccines work in people have not been thoroughly studied, researchers believe they work analogously to oral mucosal vaccines. Antigens in the vaccine induce B cells in mucosal sites to mature into plasma cells that secrete a form of IgA. That IgA is then transported into mucosal secretions throughout the body, where it becomes SIgA.
If the SIgA antibodies in the nose, mouth or throat target SARS-CoV-2, they could neutralize the virus before it can drop down into the lungs and establish an infection.
What advantage do mucosal vaccines have against COVID-19?
I believe that arguably the best way to protect an individual against COVID-19 is to block the virus at its point of entry, or at least to confine it to the upper respiratory tract, where it might inflict relatively little damage.
Breaking chains of viral transmission is crucial to controlling epidemics. Researchers know that COVID-19 spreads during normal breathing and speech, and is exacerbated by sneezing, coughing, shouting, singing and other forms of exertion. Because these emissions mostly originate from saliva and nasal secretions, where the predominant form of antibody present is SIgA, it stands to reason that secretions with a sufficiently high level of SIgA antibodies against the virus could neutralize and thereby diminish its transmissibility.
Existing vaccines, however, do not induce SIgA antibody responses. Injected vaccines primarily induce circulating IgG antibodies, which are effective in preventing serious disease in the lungs. Nasal vaccines specifically induce SIgA antibodies in nasal and salivary secretions, where the virus is initially acquired, and can more effectively prevent transmission.
Nasal vaccines may be a useful supplement to injected vaccines in hot spots of infection. Since they don’t require needles, they might also help overcome vaccine hesitancy due to fear of injections.
How close are researchers to creating a nasal COVID-19 vaccine?
There have been over 100 oral or nasal COVID-19 vaccines in development around the world.
Most of these have been or are currently being tested in animal models. Many have reported successfully inducing protective antibodies in the blood and secretions, and have prevented infection in these animals. However, few have been successfully tested in people. Many have been abandoned without fully reporting study details.
According to the World Health Organization, 14 nasal COVID-19 vaccines are in clinical trials as of late 2022. Reports from China and India indicate that nasal or inhaled vaccines have been approved in these countries. But little information is publicly available about the results of the studies supporting approval of these vaccines.

News
Johns Hopkins Researchers Uncover a New Way To Kill Cancer Cells
A new study reveals that blocking ribosomal RNA production rewires cancer cell behavior and could help treat genetically unstable tumors. Researchers at the Johns Hopkins Kimmel Cancer Center and the Department of Radiation Oncology and Molecular [...]
AI matches doctors in mapping lung tumors for radiation therapy
In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called [...]
Scientists Finally “See” Key Protein That Controls Inflammation
Researchers used advanced microscopy to uncover important protein structures. For the first time, two important protein structures in the human body are being visualized, thanks in part to cutting-edge technology at the University of [...]
AI tool detects 9 types of dementia from a single brain scan
Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single, widely available scan—a transformative [...]
Is plastic packaging putting more than just food on your plate?
New research reveals that common food packaging and utensils can shed microscopic plastics into our food, prompting urgent calls for stricter testing and updated regulations to protect public health. Beyond microplastics: The analysis intentionally [...]
Aging Spreads Through the Bloodstream
Summary: New research reveals that aging isn’t just a local cellular process—it can spread throughout the body via the bloodstream. A redox-sensitive protein called ReHMGB1, secreted by senescent cells, was found to trigger aging features [...]
AI and nanomedicine find rare biomarkers for prostrate cancer and atherosclerosis
Imagine a stadium packed with 75,000 fans, all wearing green and white jerseys—except one person in a solid green shirt. Finding that person would be tough. That's how hard it is for scientists to [...]
Are Pesticides Breeding the Next Pandemic? Experts Warn of Fungal Superbugs
Fungicides used in agriculture have been linked to an increase in resistance to antifungal drugs in both humans and animals. Fungal infections are on the rise, and two UC Davis infectious disease experts, Dr. George Thompson [...]
Scientists Crack the 500-Million-Year-Old Code That Controls Your Immune System
A collaborative team from Penn Medicine and Penn Engineering has uncovered the mathematical principles behind a 500-million-year-old protein network that determines whether foreign materials are recognized as friend or foe. How does your body [...]
Team discovers how tiny parts of cells stay organized, new insights for blocking cancer growth
A team of international researchers led by scientists at City of Hope provides the most thorough account yet of an elusive target for cancer treatment. Published in Science Advances, the study suggests a complex signaling [...]
Nanomaterials in Ophthalmology: A Review
Eye diseases are becoming more common. In 2020, over 250 million people had mild vision problems, and 295 million experienced moderate to severe ocular conditions. In response, researchers are turning to nanotechnology and nanomaterials—tools that are transforming [...]
Natural Plant Extract Removes up to 90% of Microplastics From Water
Researchers found that natural polymers derived from okra and fenugreek are highly effective at removing microplastics from water. The same sticky substances that make okra slimy and give fenugreek its gel-like texture could help [...]
Instant coffee may damage your eyes, genetic study finds
A new genetic study shows that just one extra cup of instant coffee a day could significantly increase your risk of developing dry AMD, shedding fresh light on how our daily beverage choices may [...]
Nanoneedle patch offers painless alternative to traditional cancer biopsies
A patch containing tens of millions of microscopic nanoneedles could soon replace traditional biopsies, scientists have found. The patch offers a painless and less invasive alternative for millions of patients worldwide who undergo biopsies [...]
Small antibodies provide broad protection against SARS coronaviruses
Scientists have discovered a unique class of small antibodies that are strongly protective against a wide range of SARS coronaviruses, including SARS-CoV-1 and numerous early and recent SARS-CoV-2 variants. The unique antibodies target an [...]
Controlling This One Molecule Could Halt Alzheimer’s in Its Tracks
New research identifies the immune molecule STING as a driver of brain damage in Alzheimer’s. A new approach to Alzheimer’s disease has led to an exciting discovery that could help stop the devastating cognitive decline [...]