New research led by scientists at La Jolla Institute for Immunology (LJI) reveals the workings of a human antibody called mAb 3A6, which may prove to be an important component for Ebola virus therapeutics.
This antibody was isolated from blood samples from an Ebola survivor treated at Emory University Hospital during the 2014-2016 Ebola virus outbreak, an outbreak that began in West Africa and killed more than 11,300 people.
In their new study, the researchers showed that mAb 3A6 helps block infection by binding to an important part of Ebola’s viral structure, called the “stalk.” Study collaborators at the NIH’s National Institute of Allergy and Infectious Diseases (NIAID) found that treatment with mAb 3A6 can benefit non-human primates in advanced stages of Ebola virus disease.
“This antibody offers the best protection in primates, at the lowest dose yet seen for any single antibody,” says LJI Professor, President & CEO Erica Ollmann Saphire, Ph.D., MBA, who led the recent Nature Communications study alongside John A. G. Briggs, Ph.D., of Cambridge University and the Max Planck Institute of Biochemistry; Gabriella Worwa, D.V.M., and Jens H. Kuhn, M.D., Ph.D., of NIAID; and Carl W. Davis, Ph.D., and Rafi Ahmed, Ph.D., of the Emory Vaccine Center.
The discovery that mAb 3A6 appears effective at a very low dose is also exciting. “The lower the amount of an antibody you can deliver to someone, the easier it will be to manufacture a treatment-and the lower the cost,” says study first author Kathryn Hastie, Ph.D., LJI Instructor and Director of LJI’s Center for Antibody Discovery.
How the antibody works
The key to treating Ebola virus is to find antibodies that anchor tightly to and block essential machinery of the virus. The researchers zeroed in on mAb 3A6 because it appears to target a structure on Ebola virus called the “stalk.” The stalk is an important part of the Ebola virus structure because it anchors Ebola’s glycoprotein structure (which drives entry into a host cell) to Ebola’s viral membrane.
The team spearheaded efforts to capture images of mAb 3A6 in action. The researchers used two imaging techniques, called cryoelectron tomography and x-ray crystallography, to show how mAb 3A6 binds to Ebola virus to interrupt the infection process.
The researchers found that mAb 3A6 binds to a site normally concealed by a shifting landscape of viral proteins. “There’s a dynamic movement in these proteins,” says Hastie. “They might kind of wiggle around, move back and forth, maybe lean over a little bit or go up and down.”
Antibody mAb 3A6 takes advantage of this little protein dance. It has such a strong affinity for its viral target that it can slip between the proteins, lift them up, and latch on its target.
Hastie says mAb 3A6’s ability to bind to this target is important for several reasons. First, the site is conserved across different species of Ebola virus, making antibodies that target this region an attractive component in “pan-Ebolavirus” therapeutics. Second, the new understanding of how mAb 3A6 “lifts up” proteins in the viral stalk gives scientists a clearer view of Ebola’s weaknesses. MAb 3A6 also shows us how similar antibodies against the stalks of other viruses might work as well.
This study gives us some hints for how to design vaccines that are specifically against this region of Ebola virus.”
Kathryn Hastie, Ph.D., LJI Instructor and Director of LJI’s Center for Antibody Discovery
Additional authors of the study, “Anti-Ebola virus mAb 3A6 protects highly viremic animals from fatal outcome via binding GP(1,2) in a position elevated from the virion membrane,” include Zhe “Jen” Li Salie, who solved the X-ray structure; Zunlong Ke, who performed the cryoelectron tomography; Lisa Evans DeWald, Sara McArdle, Ariadna Grinyó, Edgar Davidson, Sharon L. Schendel, Chitra Hariharan, Michael J. Norris, Xiaoying Yu, Chakravarthy Chennareddy, Xiaoli Xiong, Megan Heinrich, Michael R. Holbrook, Benjamin Doranz, Ian Crozier, Yoshihiro Kawaoka, Luis M. Branco, Jens H. Kuhn
This study was supported in part by the National Institute of Health’s National Institute for Allergy and Infectious Diseases (grant U19 AI142790, Contract No. HHSN272201400058C, Contract No. HHSN272200700016I, Contract No. HHSN272201800013C), DARPA (contract W31P4Q-14-1-0010), and UK Medical Research Council (grant MC_UP_1201/16), the European Research Council (ERC-CoG-648432 MEMBRANEFUSION), and the Max Planck Society.
Hastie, K. M., et al. (2025). Anti-Ebola virus mAb 3A6 protects highly viremic animals from fatal outcome via binding GP(1,2) in a position elevated from the virion membrane. Nature Communications. doi.org/10.1038/s41467-025-56452-2.

News
Drug-Coated Neural Implants Reduce Immune Rejection
Summary: A new study shows that coating neural prosthetic implants with the anti-inflammatory drug dexamethasone helps reduce the body’s immune response and scar tissue formation. This strategy enhances the long-term performance and stability of electrodes [...]
Scientists discover cancer-fighting bacteria that ‘soak up’ forever chemicals in the body
A family of healthy bacteria may help 'soak up' toxic forever chemicals in the body, warding off their cancerous effects. Forever chemicals, also known as PFAS (per- and polyfluoroalkyl substances), are toxic chemicals that [...]
Johns Hopkins Researchers Uncover a New Way To Kill Cancer Cells
A new study reveals that blocking ribosomal RNA production rewires cancer cell behavior and could help treat genetically unstable tumors. Researchers at the Johns Hopkins Kimmel Cancer Center and the Department of Radiation Oncology and Molecular [...]
AI matches doctors in mapping lung tumors for radiation therapy
In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called [...]
Scientists Finally “See” Key Protein That Controls Inflammation
Researchers used advanced microscopy to uncover important protein structures. For the first time, two important protein structures in the human body are being visualized, thanks in part to cutting-edge technology at the University of [...]
AI tool detects 9 types of dementia from a single brain scan
Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single, widely available scan—a transformative [...]
Is plastic packaging putting more than just food on your plate?
New research reveals that common food packaging and utensils can shed microscopic plastics into our food, prompting urgent calls for stricter testing and updated regulations to protect public health. Beyond microplastics: The analysis intentionally [...]
Aging Spreads Through the Bloodstream
Summary: New research reveals that aging isn’t just a local cellular process—it can spread throughout the body via the bloodstream. A redox-sensitive protein called ReHMGB1, secreted by senescent cells, was found to trigger aging features [...]
AI and nanomedicine find rare biomarkers for prostrate cancer and atherosclerosis
Imagine a stadium packed with 75,000 fans, all wearing green and white jerseys—except one person in a solid green shirt. Finding that person would be tough. That's how hard it is for scientists to [...]
Are Pesticides Breeding the Next Pandemic? Experts Warn of Fungal Superbugs
Fungicides used in agriculture have been linked to an increase in resistance to antifungal drugs in both humans and animals. Fungal infections are on the rise, and two UC Davis infectious disease experts, Dr. George Thompson [...]
Scientists Crack the 500-Million-Year-Old Code That Controls Your Immune System
A collaborative team from Penn Medicine and Penn Engineering has uncovered the mathematical principles behind a 500-million-year-old protein network that determines whether foreign materials are recognized as friend or foe. How does your body [...]
Team discovers how tiny parts of cells stay organized, new insights for blocking cancer growth
A team of international researchers led by scientists at City of Hope provides the most thorough account yet of an elusive target for cancer treatment. Published in Science Advances, the study suggests a complex signaling [...]
Nanomaterials in Ophthalmology: A Review
Eye diseases are becoming more common. In 2020, over 250 million people had mild vision problems, and 295 million experienced moderate to severe ocular conditions. In response, researchers are turning to nanotechnology and nanomaterials—tools that are transforming [...]
Natural Plant Extract Removes up to 90% of Microplastics From Water
Researchers found that natural polymers derived from okra and fenugreek are highly effective at removing microplastics from water. The same sticky substances that make okra slimy and give fenugreek its gel-like texture could help [...]
Instant coffee may damage your eyes, genetic study finds
A new genetic study shows that just one extra cup of instant coffee a day could significantly increase your risk of developing dry AMD, shedding fresh light on how our daily beverage choices may [...]
Nanoneedle patch offers painless alternative to traditional cancer biopsies
A patch containing tens of millions of microscopic nanoneedles could soon replace traditional biopsies, scientists have found. The patch offers a painless and less invasive alternative for millions of patients worldwide who undergo biopsies [...]