A novel architecture for optical neural networks utilizes wavefront shaping to precisely manipulate the travel of ultrashort pulses through multimode fibers, enabling nonlinear optical computation.
Present-day artificial intelligence systems rely on billions of adjustable parameters to accomplish complex objectives. Yet, the vast quantity of these parameters incurs significant expenses. The training and implementation of such extensive models demand considerable memory and processing power, available only in enormous data center facilities, consuming energy on par with the electrical demands of medium-sized cities. In response, researchers are currently reevaluating both the computing infrastructure and the machine learning algorithms to ensure the sustainable advancement of artificial intelligence continues at its current rate.
Optical implementation of neural network architectures is a promising avenue because of the low-power implementation of the connections between the units. New research reported in Advanced Photonics combines light propagation inside multimode fibers with a small number of digitally programmable parameters and achieves the same performance on image classification tasks with fully digital systems with more than 100 times more programmable parameters.
This computational framework streamlines the memory requirement and reduces the need for energy-intensive digital processes, while achieving the same level of accuracy in a variety of machine learning tasks.
Breakthrough in Nonlinear Optical Computations
The heart of this groundbreaking work, led by Professors Demetri Psaltis and Christophe Moser of EPFL (Swiss Federal Institute of Technology in Lausanne), lies in the precise control of ultrashort pulses within multimode fibers through a technique known as wavefront shaping. This allows for the implementation of nonlinear optical computations with microwatts of average optical power, reaching a crucial step in realizing the potential of optical neural networks.
“In this study, we found out that with a small group of parameters, we can select a specific set of model weights from the weight bank that optics provides and employ it for the aimed computing task. This way, we used naturally occurring phenomena as a computing hardware without going into the trouble of manufacturing and operating a device specialized for this purpose,” states Ilker Oguz, lead co-author of the work.
This result marks a significant stride towards addressing the challenges posed by the escalating demand for larger machine learning models. By harnessing the computational power of light propagation through multimode fibers, the researchers have paved the way for low-energy, highly efficient hardware solutions in artificial intelligence.
As showcased in the reported nonlinear optics experiment, this computational framework can also be put to use for efficiently programming different high-dimensional, nonlinear phenomena for performing machine learning tasks and can offer a transformative solution to the resource-intensive nature of current AI models.
Reference: “Programming nonlinear propagation for efficient optical learning machines” by Ilker Oguz, Jih-Liang Hsieh, Niyazi Ulas Dinc, Uğur Teğin, Mustafa Yildirim, Carlo Gigli, Christophe Moser and Demetri Psaltis, 25 January 2024, Advanced Photonics.
DOI: 10.1117/1.AP.6.1.016002

News
Repurposed drugs could calm the immune system’s response to nanomedicine
An international study led by researchers at the University of Colorado Anschutz Medical Campus has identified a promising strategy to enhance the safety of nanomedicines, advanced therapies often used in cancer and vaccine treatments, [...]
Nano-Enhanced Hydrogel Strategies for Cartilage Repair
A recent article in Engineering describes the development of a protein-based nanocomposite hydrogel designed to deliver two therapeutic agents—dexamethasone (Dex) and kartogenin (KGN)—to support cartilage repair. The hydrogel is engineered to modulate immune responses and promote [...]
New Cancer Drug Blocks Tumors Without Debilitating Side Effects
A new drug targets RAS-PI3Kα pathways without harmful side effects. It was developed using high-performance computing and AI. A new cancer drug candidate, developed through a collaboration between Lawrence Livermore National Laboratory (LLNL), BridgeBio Oncology [...]
Scientists Are Pretty Close to Replicating the First Thing That Ever Lived
For 400 million years, a leading hypothesis claims, Earth was an “RNA World,” meaning that life must’ve first replicated from RNA before the arrival of proteins and DNA. Unfortunately, scientists have failed to find [...]
Why ‘Peniaphobia’ Is Exploding Among Young People (And Why We Should Be Concerned)
An insidious illness is taking hold among a growing proportion of young people. Little known to the general public, peniaphobia—the fear of becoming poor—is gaining ground among teens and young adults. Discover the causes [...]
Team finds flawed data in recent study relevant to coronavirus antiviral development
The COVID pandemic illustrated how urgently we need antiviral medications capable of treating coronavirus infections. To aid this effort, researchers quickly homed in on part of SARS-CoV-2's molecular structure known as the NiRAN domain—an [...]
Drug-Coated Neural Implants Reduce Immune Rejection
Summary: A new study shows that coating neural prosthetic implants with the anti-inflammatory drug dexamethasone helps reduce the body’s immune response and scar tissue formation. This strategy enhances the long-term performance and stability of electrodes [...]
Scientists discover cancer-fighting bacteria that ‘soak up’ forever chemicals in the body
A family of healthy bacteria may help 'soak up' toxic forever chemicals in the body, warding off their cancerous effects. Forever chemicals, also known as PFAS (per- and polyfluoroalkyl substances), are toxic chemicals that [...]
Johns Hopkins Researchers Uncover a New Way To Kill Cancer Cells
A new study reveals that blocking ribosomal RNA production rewires cancer cell behavior and could help treat genetically unstable tumors. Researchers at the Johns Hopkins Kimmel Cancer Center and the Department of Radiation Oncology and Molecular [...]
AI matches doctors in mapping lung tumors for radiation therapy
In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called [...]
Scientists Finally “See” Key Protein That Controls Inflammation
Researchers used advanced microscopy to uncover important protein structures. For the first time, two important protein structures in the human body are being visualized, thanks in part to cutting-edge technology at the University of [...]
AI tool detects 9 types of dementia from a single brain scan
Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single, widely available scan—a transformative [...]
Is plastic packaging putting more than just food on your plate?
New research reveals that common food packaging and utensils can shed microscopic plastics into our food, prompting urgent calls for stricter testing and updated regulations to protect public health. Beyond microplastics: The analysis intentionally [...]
Aging Spreads Through the Bloodstream
Summary: New research reveals that aging isn’t just a local cellular process—it can spread throughout the body via the bloodstream. A redox-sensitive protein called ReHMGB1, secreted by senescent cells, was found to trigger aging features [...]
AI and nanomedicine find rare biomarkers for prostrate cancer and atherosclerosis
Imagine a stadium packed with 75,000 fans, all wearing green and white jerseys—except one person in a solid green shirt. Finding that person would be tough. That's how hard it is for scientists to [...]
Are Pesticides Breeding the Next Pandemic? Experts Warn of Fungal Superbugs
Fungicides used in agriculture have been linked to an increase in resistance to antifungal drugs in both humans and animals. Fungal infections are on the rise, and two UC Davis infectious disease experts, Dr. George Thompson [...]