| Serological tests play an important role in the surveillance and management of epidemics or pandemics, as well as in acquired immunity studies. Currently, COVID-19 serology is performed by well-established immunoassay techniques, which provide high sensitivities, but require specialized laboratories with trained personnel and processing times of 3 to 48 hours. | |
| A much faster and easier method is the lateral flow assay— such as the rapid diagnostic tests sold in pharmacies. However, the latter are not fully reliable, as they exhibit only moderate sensitivity and specificity. | |
| A team of researchers led by Prof. Laura M. Lechuga, CSIC Research Professor and head of the NanoBiosensors and Bioanalytical Applications Group at the Catalan Institute of Nanoscience and Nanotechnology (ICN2), has developed and extensively validated a novel serological nano-biosensor that provides a rapid (less than 15 minutes) identification and quantification of SARS-COV-2 antibodies in blood serum, without the need for sample pre-treatment and lengthy processing. It employs an optical sensing device based on a plasmonic technique that Prof. Lechuga’s group has been consolidating for years and has implemented for the diagnostics of diverse diseases and conditions –such as detection of cancer biomarkers, gluten ingestion or antibiotic allergy. |
| Extensive testing on clinical samples, provided by the Vall d’Hebron University Hospital and the Hospital Clínic of Barcelona–IDIBAPS during the first months of COVID-19 pandemic, was performed to prove the efficacy and reliability of this biosensor technology. In particular, 120 samples of serum were used, of which 100 from confirmed COVID-19 positive patients and 20 negative ones (collected prior to the outbreak of the pandemic). Comparative analyses with standard techniques and commercial lateral flow assays showed that this plasmonic biosensor technology outperforms well-established diagnostic methods, providing excellent sensitivity (99%) and specificity (100%). | |
| Such remarkable accuracy and the short operation times (the result is available in less than 15 minutes) make of this new biosensor an outstanding tool for rapid and reliable serological tests. Fast and quantitative serology is crucial for monitoring the evolution of the COVID-19 pandemic, managing patients’ hospitalization and placement in intensive care units and assessing the immunological status of individuals during vaccination campaigns and in the presence of emerging variants of the virus. | |
| Since the read-out device is compact and the procedure can be automatized, this technology has also potential for point-of-care applications and could be introduced in doctors’ practices and pharmacies. In addition, the same technique can be employed for the detection of various substances in body fluids –such as gluten peptides, early cancer biomarkers, anticoagulant drugs, or antibiotic allergy antibodies — thus, for the diagnostics and monitoring of many diseases. | |
| The readiness level of this technique is already very high and their developers are committed to achieve a fast technology transfer to industry, in order to introduce this new biosensor device both in the clinical environment and in decentralised settings. Watch this animation illustrating how a portable read-out device with disposal cartridges would work. | |
| The results of this study, carried out in the framework of the EU funded project CoNVaT, have been published in Analytical Chemistry (“Label-Free Plasmonic Biosensor for Rapid, Quantitative, and Highly Sensitive COVID-19 Serology: Implementation and Clinical Validation”). The research has been developed by Prof Lechuga’s group in collaboration with the Intensive Care and Clinical Microbiology Departments of the Vall d’Hebron University Hospital (Barcelona, Spain), the Department of Pneumology of the Hospital Clínic of Barcelona-IDIBAPS, and the Emerging Virus Unit of Aix-Marseille University (France). Senior researchers Dr Maria Soler and Dr M. Carmen Estévez are the corresponding authors, while PhD student Olalla Calvo-Lozano is the first author, having performed the optimization and validation of the system. |
News
Nanoparticle blueprints reveal path to smarter medicines
Lipid nanoparticles (LNPs) are the delivery vehicles of modern medicine, carrying cancer drugs, gene therapies and vaccines into cells. Until recently, many scientists assumed that all LNPs followed more or less the same blueprint, [...]
How nanomedicine and AI are teaming up to tackle neurodegenerative diseases
When I first realized the scale of the challenge posed by neurodegenerative diseases, such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis (ALS), I felt simultaneously humbled and motivated. These disorders are not caused [...]
Self-Organizing Light Could Transform Computing and Communications
USC engineers have demonstrated a new kind of optical device that lets light organize its own route using the principles of thermodynamics. Instead of relying on switches or digital control, the light finds its own [...]
Groundbreaking New Way of Measuring Blood Pressure Could Save Thousands of Lives
A new method that improves the accuracy of interpreting blood pressure measurements taken at the ankle could be vital for individuals who are unable to have their blood pressure measured on the arm. A newly developed [...]
Scientist tackles key roadblock for AI in drug discovery
The drug development pipeline is a costly and lengthy process. Identifying high-quality "hit" compounds—those with high potency, selectivity, and favorable metabolic properties—at the earliest stages is important for reducing cost and accelerating the path [...]
Nanoplastics with environmental coatings can sneak past the skin’s defenses
Plastic is ubiquitous in the modern world, and it's notorious for taking a long time to completely break down in the environment - if it ever does. But even without breaking down completely, plastic [...]
Chernobyl scientists discover black fungus feeding on deadly radiation
It looks pretty sinister, but it might actually be incredibly helpful When reactor number four in Chernobyl exploded, it triggered the worst nuclear disaster in history, one which the surrounding area still has not [...]
Long COVID Is Taking A Silent Toll On Mental Health, Here’s What Experts Say
Months after recovering from COVID-19, many people continue to feel unwell. They speak of exhaustion that doesn’t fade, difficulty breathing, or an unsettling mental haze. What’s becoming increasingly clear is that recovery from the [...]
Study Delivers Cancer Drugs Directly to the Tumor Nucleus
A new peptide-based nanotube treatment sneaks chemo into drug-resistant cancer cells, providing a unique workaround to one of oncology’s toughest hurdles. CiQUS researchers have developed a novel molecular strategy that allows a chemotherapy drug to [...]
Scientists Begin $14.2 Million Project To Decode the Body’s “Hidden Sixth Sense”
An NIH-supported initiative seeks to unravel how the nervous system tracks and regulates the body’s internal organs. How does your brain recognize when it’s time to take a breath, when your blood pressure has [...]
Scientists Discover a New Form of Ice That Shouldn’t Exist
Researchers at the European XFEL and DESY are investigating unusual forms of ice that can exist at room temperature when subjected to extreme pressure. Ice comes in many forms, even when made of nothing but water [...]
Nobel-winning, tiny ‘sponge crystals’ with an astonishing amount of inner space
The 2025 Nobel Prize in chemistry was awarded to Richard Robson, Susumu Kitagawa and Omar Yaghi on Oct. 8, 2025, for the development of metal-organic frameworks, or MOFs, which are tunable crystal structures with extremely [...]
Harnessing Green-Synthesized Nanoparticles for Water Purification
A new review reveals how plant- and microbe-derived nanoparticles can power next-gen water disinfection, delivering cleaner, safer water without the environmental cost of traditional treatments. A recent review published in Nanomaterials highlights the potential of green-synthesized nanomaterials (GSNMs) in [...]
Brainstem damage found to be behind long-lasting effects of severe Covid-19
Damage to the brainstem - the brain's 'control center' - is behind long-lasting physical and psychiatric effects of severe Covid-19 infection, a study suggests. Using ultra-high-resolution scanners that can see the living brain in [...]
CT scan changes over one year predict outcomes in fibrotic lung disease
Researchers at National Jewish Health have shown that subtle increases in lung scarring, detected by an artificial intelligence-based tool on CT scans taken one year apart, are associated with disease progression and survival in [...]
AI Spots Hidden Signs of Disease Before Symptoms Appear
Researchers suggest that examining the inner workings of cells more closely could help physicians detect diseases earlier and more accurately match patients with effective therapies. Researchers at McGill University have created an artificial intelligence tool capable of uncovering [...]














