Researchers at Harvard Medical School and National Cheng Kung University in Taiwan have created a new artificial intelligence model that could help doctors make more informed decisions about treatment and prognosis for patients with colorectal cancer, the second leading cause of cancer deaths worldwide.
The new tool can accurately predict the aggressiveness of a colorectal tumor, the likelihood of survival with and without disease recurrence, and the optimal therapy for the patient, solely by analyzing images of tumor samples, which are microscopic depictions of cancer cells.
Having a tool that answers such questions could help clinicians and patients navigate this wily disease, which often behaves differently even among people with similar disease profiles who receive the same treatment — and could ultimately spare some of the 1 million lives that colorectal cancer claims every year.
The researchers say that the tool is meant to enhance, not replace, human expertise.
“Our model performs tasks that human pathologists cannot do based on image viewing alone,” said study co-senior author Kun-Hsing Yu, assistant professor of biomedical informatics in the Blavatnik Institute at HMS. Yu led an international team of pathologists, oncologists, biomedical informaticians, and computer scientists.
“What we anticipate is not a replacement of human pathology expertise, but the augmentation of what human pathologists can do,” Yu added. “We fully expect that this approach will augment the current clinical practice of cancer management.”
The researchers caution that any individual patient’s prognosis depends on multiple factors and that no model can perfectly predict any given patient’s survival. However, they add, the new model could be useful in guiding clinicians to follow up more closely, consider more aggressive treatments, or recommend clinical trials testing experimental therapies if their patients have worse predicted prognoses based on the tool’s assessment.
The tool could be particularly useful in resource-limited areas both in this country and around the world where advanced pathology and tumor genetic sequencing may not be readily available, the researchers noted.
The new tool goes beyond many current AI tools, which primarily perform tasks that replicate or optimize human expertise. The new tool, by comparison, detects and interprets visual patterns on microscopy images that are indiscernible to the human eye.
The tool, called MOMA (for Multi-omics Multi-cohort Assessment) is freely available to researchers and clinicians.
Extensive training and testing
The model was trained on information obtained from nearly 2,000 patients with colorectal cancer from diverse national patient cohorts that together include more than 450,000 participants — the Health Professionals Follow-up Study, the Nurses’ Health Study, the Cancer Genome Atlas Program, and the NIH’s PLCO (Prostate, Lung, Colorectal, and Ovarian) Cancer Screening Trial.
During the training phase, the researchers fed the model information about the patients’ age, sex, cancer stage, and outcomes. They also gave it information about the tumors’ genomic, epigenetic, protein, and metabolic profiles.
Then the researchers showed the model pathology images of tumor samples and asked it to look for visual markers related to tumor types, genetic mutations, epigenetic alterations, disease progression, and patient survival.
The researchers then tested how the model might perform in “the real world” by feeding it a set of images it had not seen before of tumor samples from different patients. They compared its performance with the actual patient outcomes and other available clinical information.
The model accurately predicted the patients’ overall survival following diagnosis, as well as how many of those years would be cancer-free.
The tool also accurately predicted how an individual patient might respond to different therapies, based on whether the patient’s tumor harbored specific genetic mutations that rendered the cancer more or less prone to progression or spread.
In both of those areas, the tool outperformed human pathologists as well as current AI models.
The researchers said the model will undergo periodic upgrading as science evolves and new data emerge.
“It is critical that with any AI model, we continuously monitor its behavior and performance because we may see shifts in the distributions of disease burden or new environmental toxins that contribute to cancer development,” Yu said. “It’s important to augment the model with new and more data as they come along so that its performance never lags behind.”
Discerning telltale patterns
The new model takes advantage of recent advances in tumor imaging techniques that offer unprecedented levels of detail, which nonetheless remain indiscernible to human evaluators. Based on these details, the model successfully identified indicators of how aggressive a tumor was and how likely it was to behave in response to a particular treatment.
Based on an image alone, the model also pinpointed characteristics associated with the presence or absence of specific genetic mutations — something that typically requires genomic sequencing of the tumor. Sequencing can be time-consuming and costly, particularly for hospitals where such services are not routinely available.
It is precisely in such situations that the model could provide timely decision support for treatment choice in resource-limited settings or in situations where there is no tumor tissue available for genetic sequencing, the researchers said.
The researchers said that before deploying the model for use in clinics and hospitals, it should be tested in a prospective, randomized trial that assesses the tool’s performance in actual patients over time after initial diagnosis. Such a study would provide the gold-standard demonstration of the model’s capabilities, Yu said, by directly comparing the tool’s real-life performance using images alone with that of human clinicians who use knowledge and test results that the model does not have access to.
Another strength of the model, the researchers said, is its transparent reasoning. If a clinician using the model asks why it made a given prediction, the tool would be able to explain its reasoning and the variables it used.
This feature is important for increasing clinicians’ confidence in the AI models they use, Yu said.
Gauging disease progression, optimal treatment
The model accurately pinpointed image characteristics related to differences in survival.
For example, it identified three image features that portended worse outcomes:
- Greater cell density within a tumor.
- The presence of connective supportive tissue around tumor cells, known as the stroma.
- Interactions of tumor cells with smooth muscle cells.
The model also identified patterns within the tumor stroma that indicated which patients were more likely to live longer without cancer recurrence.
The tool also accurately predicted which patients would benefit from a class of cancer treatments known as immune checkpoint inhibitors. While these therapies work in many patients with colon cancer, some experience no measurable benefit and have serious side effects. The model could thus help clinicians tailor treatment and spare patients who wouldn’t benefit, Yu said.
The model also successfully detected epigenetic changes associated with colorectal cancer. These changes — which occur when molecules known as methyl groups attach to DNA and alter how that DNA behaves — are known to silence genes that suppress tumors, causing the cancers to grow rapidly. The model’s ability to identify these changes marks another way it can inform treatment choice and prognosis.

News
The CDC buried a measles forecast that stressed the need for vaccinations
This story was originally published on ProPublica, a nonprofit newsroom that investigates abuses of power. Sign up to receive our biggest stories as soon as they’re published. ProPublica — Leaders at the Centers for Disease Control and Prevention [...]
Light-Driven Plasmonic Microrobots for Nanoparticle Manipulation
A recent study published in Nature Communications presents a new microrobotic platform designed to improve the precision and versatility of nanoparticle manipulation using light. Led by Jin Qin and colleagues, the research addresses limitations in traditional [...]
Cancer’s “Master Switch” Blocked for Good in Landmark Study
Researchers discovered peptides that permanently block a key cancer protein once thought untreatable, using a new screening method to test their effectiveness inside cells. For the first time, scientists have identified promising drug candidates [...]
AI self-cloning claims: A new frontier or a looming threat?
Chinese scientists claim that some AI models can replicate themselves and protect against shutdown. Has artificial intelligence crossed the so-called red line? Chinese researchers have published two reports on arXiv claiming that some artificial [...]
New Drug Turns Human Blood Into Mosquito-Killing Weapon
Nitisinone, a drug for rare diseases, kills mosquitoes when present in human blood and may become a new tool to fight malaria, offering longer-lasting, environmentally safer effects than ivermectin. Controlling mosquito populations is a [...]
DNA Microscopy Creates 3D Maps of Life From the Inside Out
What if you could take a picture of every gene inside a living organism—not with light, but with DNA itself? Scientists at the University of Chicago have pioneered a revolutionary imaging technique called volumetric DNA microscopy. It builds [...]
Scientists Just Captured the Stunning Process That Shapes Chromosomes
Scientists at EMBL have captured how human chromosomes fold into their signature rod shape during cell division, using a groundbreaking method called LoopTrace. By observing overlapping DNA loops forming in high resolution, they revealed that large [...]
Bird Flu Virus Is Mutating Fast – Scientists Say Our Vaccines May Not Be Enough
H5N1 influenza is evolving rapidly, weakening the effectiveness of existing antibodies and increasing its potential threat to humans. Scientists at UNC Charlotte and MIT used high-performance computational modeling to analyze thousands of viral protein-antibody interactions, revealing [...]
Revolutionary Cancer Vaccine Targets All Solid Tumors
The method triggers immune responses that inhibit melanoma, triple-negative breast cancer, lung carcinoma, and ovarian cancer. Cancer treatment vaccines have been in development since 2010, when the first was approved for prostate cancer, followed [...]
Scientists Uncover Hidden Protein Driving Autoimmune Attacks
Scientists have uncovered a critical piece of the puzzle in autoimmune diseases: a protein that helps release immune response molecules. By studying an ultra-rare condition, researchers identified ArfGAP2 as a key player in immune [...]
Mediterranean neutrino observatory sets new limits on quantum gravity
Quantum gravity is the missing link between general relativity and quantum mechanics, the yet-to-be-discovered key to a unified theory capable of explaining both the infinitely large and the infinitely small. The solution to this [...]
Challenging Previous Beliefs: Japanese Scientists Discover Hidden Protector of Heart
A Japanese research team found that the oxidized form of glutathione (GSSG) may protect heart tissue by modifying a key protein, potentially offering a novel therapeutic approach for ischemic heart failure. A new study [...]
Millions May Have Long COVID – So Why Can’t They Get Diagnosed?
Millions of people in England may be living with Long Covid without even realizing it. A large-scale analysis found that nearly 10% suspect they might have the condition but remain uncertain, often due to [...]
Researchers Reveal What Happens to Your Brain When You Don’t Get Enough Sleep
What if poor sleep was doing more than just making you tired? Researchers have discovered that disrupted sleep in older adults interferes with the brain’s ability to clean out waste, leading to memory problems [...]
How to prevent chronic inflammation from zombie-like cells that accumulate with age
In humans and other multicellular organisms, cells multiply. This defining feature allows embryos to grow into adulthood, and enables the healing of the many bumps, bruises and scrapes along the way. Certain factors can [...]
Breakthrough for long Covid patients who lost sense of smell
A breakthrough nasal surgery has restored the sense of smell for a dozen long Covid patients. Experts at University College London Hospitals NHS Foundation Trust successfully employed a technique typically used for correcting blocked nasal passages, [...]