A study in Scientific Reports evaluated a photoacoustic polydopamine-indocyanine green (PDA-ICG) nanoprobe for detecting senescent cells. Senescent cells play a role in tumor progression and therapeutic resistance, with potential adverse effects such as inflammation and tissue disruption. The PDA-ICG nanoprobe offers a method for identifying these cells, with implications for cancer diagnostics and treatment.
Background
Cellular senescence is a stable cell cycle arrest triggered by stressors such as DNA damage, oxidative stress, and oncogenic signaling. Senescent cells produce pro-inflammatory cytokines, growth factors, and proteases, collectively known as the senescence-associated secretory phenotype (SASP).
This phenomenon contributes to tumor progression and age-related diseases. Accurately identifying and visualizing these cells in vivo is crucial for understanding their role in cancer biology and developing targeted therapies.
Traditional methods for detecting senescent cells, such as β-galactosidase staining and immunohistochemistry, have limitations in terms of specificity and sensitivity. The introduction of advanced imaging techniques, particularly those utilizing nanoprobes, offers a promising avenue for enhancing the detection of senescent cells.
The PDA-ICG nanoprobe combines the photothermal properties of polydopamine with the fluorescence of indocyanine green, enabling both photoacoustic imaging and fluorescence imaging. This dual functionality is expected to improve the visualization of senescent cells.
The Current Study
The study used experimental techniques to evaluate the performance of the PDA-ICG nanoprobe. Human cancer cell lines, A549 and SK-MEL-103, were cultured and treated with varying concentrations of PDA-ICG to assess cell viability and nanoprobe internalization.
The MTS assay measured cell viability after treatment, and flow cytometry assessed nanoprobe internalization in live cells. After treatment, cells were washed to remove excess probes and stained with DAPI for flow cytometric analysis. Data were processed using FlowJo software to identify live, single-cell populations with internalized nanoprobe.
Cells were treated with chemotherapeutic agents, cisplatin and palbociclib, for a specified duration. After drug removal, the cells were stained with β-galactosidase to identify senescent cells. RNA extraction and quantitative real-time PCR (RT-qPCR) were performed to measure the expression levels of senescence-associated genes.
Western blotting was conducted to analyze protein expression related to senescence, including p21 and pRb. Confocal microscopy was utilized to visualize the cellular localization of the PDA-ICG nanoprobe and assess its potential for imaging senescent cells.
Results and Discussion
The results showed that the PDA-ICG nanoprobe was successfully internalized into cancer cells, with flow cytometry confirming significantly higher uptake in treated cells than controls. The MTS assay indicated no adverse effects on cell viability at the tested concentrations, supporting its potential for safe in vivo application.
The study also found that treatment with cisplatin and palbociclib successfully induced senescence in the respective cell lines, as evidenced by increased β-galactosidase activity. The expression of senescence-associated genes was significantly elevated in treated cells, further confirming the induction of senescence.
Confocal microscopy highlighted the PDA-ICG nanoprobe’s imaging capabilities, revealing distinct localization patterns within the cells. The nanoprobe’s dual imaging modality allowed for more precise visualization of senescent cells than traditional methods. The findings suggest that the PDA-ICG nanoprobe could serve as a valuable tool for studying the dynamics of senescence in cancer and other diseases.
The ability to visualize senescent cells in real time may facilitate the development of targeted therapies that eliminate these cells from the tumor microenvironment, potentially improving patient outcomes.
Conclusion
The study successfully demonstrated the utility of the PDA-ICG nanoprobe for detecting senescent cells in cancer. Combining the advantages of photoacoustic and fluorescence imaging, this innovative approach offers a promising strategy for enhancing the visualization of senescence in vivo. The findings underscore the importance of accurately identifying senescent cells in the context of cancer biology and therapeutic interventions.
Future research should focus on optimizing the nanoprobe for clinical applications and exploring its potential in various cancer models. The ability to monitor senescence dynamically could lead to significant advancements in cancer diagnostics and treatment, ultimately contributing to improved patient care and outcomes.
Journal Reference
Hartono, M., et al. (2024). Photoacoustic polydopamine-indocyanine green (PDA-ICG) nanoprobe for detection of senescent cells. Scientific Reports. DOI: 10.1038/s41598-024-79667-7, https://www.nature.com/articles/s41598-024-79667-7
![](https://www.nanoappsmedical.com/wp-content/uploads/2017/05/spacer.jpg)
News
Why Some Drinkers Suffer Devastating Liver Damage While Others Don’t
A study from Keck Medicine of USC found that heavy drinkers with diabetes, high blood pressure, or a large waistline are up to 2.4 times more likely to develop advanced liver disease. These conditions may amplify [...]
“Good” Cholesterol Could Be Bad for Your Eyes – New Study Raises Concerns
‘Good’ cholesterol may be linked to an increased risk of glaucoma in individuals over 55, while, paradoxically, ‘bad’ cholesterol may be associated with a lower risk. These findings challenge conventional beliefs about factors that [...]
Reawakening Dormant Nerve Cells: Groundbreaking Neurotechnology Restores Motor Function
A new electrical stimulation therapy for spinal muscle atrophy (SMA) has shown promise in reactivating motor neurons and improving movement. In a pilot clinical trial, three patients who received spinal cord stimulation for one [...]
AI’s Energy Crisis Solved? A Revolutionary Magnetic Chip Could Change Everything
AI is evolving at an incredible pace, but its growing energy demands pose a major challenge. Enter spintronic devices—new technology that mimics the brain’s efficiency by integrating memory and processing. Scientists in Japan have [...]
Nanotechnology for oil spill response and cleanup in coastal regions
(Nanowerk News) Cleaning up after a major oil spill is a long, expensive process, and the damage to a coastal region’s ecosystem can be significant. This is especially true for the world’s Arctic region, [...]
The Role of Nanotechnology in Space Exploration
Nanotechnology, which involves working with materials at the atomic or molecular level, is becoming increasingly important in space exploration. By improving strength, thermal stability, electrical conductivity, and radiation resistance, nanotechnology is helping create lighter, more [...]
New Study Challenges Beliefs About CBD in Pregnancy, Reveals Unexpected Risks
CBD is gaining popularity as a remedy for pregnancy symptoms like nausea and anxiety, but new research suggests it may not be as safe as many believe. A study from McMaster University found that [...]
Does COVID increase the risk of Alzheimer’s disease?
Scientists discover that even mild COVID-19 can alter brain proteins linked to Alzheimer’s disease, potentially increasing dementia risk—raising urgent public health concerns. A recent study published in the journal Nature Medicine investigated whether both mild and [...]
New MRI Study Reveals How Cannabis Alters Brain Activity and Weakens Memory
A massive new study sheds light on how cannabis affects the brain, particularly during cognitive tasks. Researchers analyzed over 1,000 young adults and found that both heavy lifetime use and recent cannabis consumption significantly reduced brain [...]
How to Assess Nanotoxicity: Key Methods and Protocols
With their high surface area and enhanced physicochemical properties, nanomaterials play a critical role in drug delivery, consumer products, and environmental technologies. However, their nanoscale dimensions enable interactions with cellular components in complex and [...]
Nanotech drug delivery shows lasting benefits, reducing need for repeat surgeries
A nanotechnology-based drug delivery system developed at UVA Health to save patients from repeated surgeries has proved to have unexpectedly long-lasting benefits in lab tests – a promising sign for its potential to help human patients. [...]
Scientists Just Found DNA’s Building Blocks in Asteroid Bennu – Could This Explain Life’s Origins?
Japanese scientists detected all five nucleobases — building blocks of DNA and RNA — in samples returned from asteroid Bennu by NASA’s OSIRIS-REx mission. NASA’s OSIRIS-REx mission brought back 121.6 grams of asteroid Bennu, unveiling nitrogen-rich organic matter, including DNA’s essential [...]
AI-Designed Proteins – Unlike Any Found in Nature – Revolutionize Snakebite Treatment
Scientists have pioneered a groundbreaking method to combat snake venom using newly designed proteins, offering hope for more effective, accessible, and affordable antivenom solutions. By utilizing advanced computational techniques and deep learning, this innovative [...]
New nanosystem offers hope for improved diagnosis and treatment of tongue cancer
A pioneering study has unveiled the Au-HN-1 nanosystem, a cutting-edge approach that promises to transform the diagnosis and treatment of tongue squamous cell carcinoma (TSCC). By harnessing gold nanoparticles coupled with the HN-1 peptide, [...]
Global Trust in Science Is Stronger Than Expected – What’s Next?
A landmark global survey conducted across 68 countries has found that public trust in scientists remains robust, with significant support for their active involvement in societal and political matters. The study highlights the public’s [...]
Microplastics in the bloodstream may pose hidden risks to brain health
In a recent study published in the journal Science Advances, researchers investigated the impact of microplastics on blood flow and neurobehavioral functions in mice. Using advanced imaging techniques, they observed that microplastics obstruct cerebral blood [...]