In a paper recently printed in the journal ACS Applied Materials & Interfaces, to imitate the photonic reaction of squid skin, researchers sequenced, recombinantly produced, and self-assembled reflective proteins from Sepioteuthis. lessioniana into spherical nanoparticles by combining reflectin B1 with a click chemistry ligand.
Taking Inspiration from Cephalopods
Cephalopods (cuttlefish, squids and octopuses) are natural camouflage masters. They use metachrosis to adaptively regulate the morphology of dermal cells, iridophores and chromatophores to control body coloration as well as body patterns. Bragg reflectors, which utilize thin-film constructive interference and periodic spacing of photonic crystals, are frequently used in iridescent light-refractive and reflective materials.
Squids belonging to Loliginidae family, including S. lessioniana, the subject of this study, have the unusual ability to tune and control the internal construction and regularity of Bragg-like reflector platelets contained within iridophores, which are completely made of proteins known as reflectins. The consequent dynamic iridescence is a wavelength and angle-dependent reflection that produces a wide range of bright colors.
Earlier studies have shown that the phosphorylation/dephosphorylation of condensed reflectin nanoparticles in reflector platelets controls these adaptive photonic properties. Phosphorylation rapidly transmits negative charges to positively charged reflectins, leading to the neutralization of charge and reduction in nanoparticle size, and subsequently a blue shift in wavelength emission.
Controlling the Size of Reflectins can Control their Color
Due to their unique features, reflections have been utilized to generate structurally colored bio-photonic substrates. It has been recently reported that full-length reflectins can self-assemble into well-controlled nanoparticles and then be integrated into photonic coatings.
It was hypothesized that the color of coatings/films composed of recombinant reflectin nanoparticles could be controlled by neutralizing them into photonic structures and regulating their size.
Key Features of the Research
The development of reflectin-based nanoparticles was regulated for the first time in this study by presenting the DBCO-Sulfo-NHS ester and merely changing the post-purification dialysis parameters with ACN. The approach for conjugation and self-assembly was centered around fundamental colloidal chemistry and was carried out under specific conditions, including ambient pressure, physiological circumstances (pH 7.0) and room temperature.
The click chemistry ligand offered many advantages. The size of the nanoparticles could be controlled with quasi-monodispersity. The DBCO synthesized protein nanoparticles were click-chemistry set, allowing a wide range of ligand conjugates to change the photonic reactivity and surface chemistry.
The results showed that DCBO bounded SlRF-B1 can self-assemble into nanoparticles of diverse sizes with a regulated size distribution. The production of large particles also enabled the researchers to learn more about protein coalescence and the self-assembly process of reflectins.
Modulating the Desired Colors
The monolayer films with nanoparticle sizes ranging from 170 to 310 nm provided structural colors ranging from blue to near-infrared. The higher-order maximum did not obstruct the 270 nm nanoparticles red sample because it was in the UV area. When the size of nanoparticle was equal to the observable wavelength, single particle scattering properties were observed.
The higher-order resonance peak with greater optical captivity changed into the blue wavelength region for the coatings of 660 nm nanoparticle, hence red architectural coloration was not detected. A deep red color coating was achieved by combining 660 nm nanoparticles with coumarin 343X azide, a method that replicates the function of xanthommantin in squid chromatophores.
Advantages and Applications of the Developed Photonic Coatings
Coatings made with click chemistry immobilization remained durable at room temperature for more than a year without requiring special storage. The study was able to show time-resolved self-assembly of reflectin nanoparticles thanks to the single molecule ligand DBCO-Sulfo-NHS ester’s ability to trigger regulated nanoparticle development.
Overall, this research establishes a larger area for protein-based photonic nanostructures in optoelectronic sensors and displays, with the potential to be extended to other sectors such as nanocarriers for regulated drug administration.
Since the coatings can be tailored to reflect near-infrared light, it is possible for them to be helpful for commercial uses in window coatings in tropical environments, reducing infrared absorption and lowering the carbon footprint of air conditioning equipment.

News
How to prevent chronic inflammation from zombie-like cells that accumulate with age
In humans and other multicellular organisms, cells multiply. This defining feature allows embryos to grow into adulthood, and enables the healing of the many bumps, bruises and scrapes along the way. Certain factors can [...]
Breakthrough for long Covid patients who lost sense of smell
A breakthrough nasal surgery has restored the sense of smell for a dozen long Covid patients. Experts at University College London Hospitals NHS Foundation Trust successfully employed a technique typically used for correcting blocked nasal passages, [...]
Scientists Invent Plastic That Can Dissolve In Seawater In Just A Few Hours
Plastic waste and pollution in the sea have been among the most serious environmental problems for decades, causing immense damage to marine life and ecosystems. However, a breakthrough discovery may offer a game-changing solution. [...]
Muscles from the 3D printer
Swiss researchers have developed a method for printing artificial muscles out of silicone. In the future, these could be used on both humans and robots. Swiss researchers have succeeded in printing artificial muscles out [...]
Beneficial genetic changes observed in regular blood donors
Researchers at the Francis Crick Institute have identified genetic changes in blood stem cells from frequent blood donors that support the production of new, non-cancerous cells. Understanding the differences in the mutations that accumulate [...]
Shocking Amounts of Microplastics in the Brain – It Could Be Increasing Our Risk of Dementia
The brain has higher concentrations of plastic particles compared to other organs, with increased levels found in dementia patients. In a comprehensive commentary published in Brain Medicine, researchers highlight alarming new evidence of microplastic accumulation [...]
Baffling Scientists for Centuries: New Study Unravels Mystery of Static Electricity
ISTA physicists demonstrate that contact electrification depends on the contact history of materials. For centuries, static electricity has intrigued and perplexed scientists. Now, researchers from the Waitukaitis group at the Institute of Science and [...]
Tumor “Stickiness” – Scientists Develop Potential New Way To Predict Cancer’s Spread
UC San Diego researchers have developed a device that predicts breast cancer aggressiveness by measuring tumor cell adhesion. Weakly adherent cells indicate a higher risk of metastasis, especially in early-stage DCIS. This innovation could [...]
Scientists Just Watched Atoms Move for the First Time Using AI
Scientists have developed a groundbreaking AI-driven technique that reveals the hidden movements of nanoparticles, essential in materials science, pharmaceuticals, and electronics. By integrating artificial intelligence with electron microscopy, researchers can now visualize atomic-level changes that were [...]
Scientists Sound Alarm: “Safe” Antibiotic Has Led to an Almost Untreatable Superbug
A recent study reveals that an antibiotic used for liver disease patients may increase their risk of contracting a dangerous superbug. An international team of researchers has discovered that rifaximin, a commonly prescribed antibiotic [...]
Scientists Discover Natural Compound That Stops Cancer Progression
A discovery led by OHSU was made possible by years of study conducted by University of Portland undergraduates. Scientists have discovered a natural compound that can halt a key process involved in the progression [...]
Scientists Just Discovered an RNA That Repairs DNA Damage – And It’s a Game-Changer
Our DNA is constantly under threat — from cell division errors to external factors like sunlight and smoking. Fortunately, cells have intricate repair mechanisms to counteract this damage. Scientists have uncovered a surprising role played by [...]
What Scientists Just Discovered About COVID-19’s Hidden Death Toll
COVID-19 didn’t just claim lives directly—it reshaped mortality patterns worldwide. A major international study found that life expectancy plummeted across most of the 24 analyzed countries, with additional deaths from cardiovascular disease, substance abuse, and mental [...]
Self-Propelled Nanoparticles Improve Immunotherapy for Non-Invasive Bladder Cancer
A study led by Pohang University of Science and Technology (POSTECH) and the Institute for Bioengineering of Catalonia (IBEC) in South Korea details the creation of urea-powered nanomotors that enhance immunotherapy for bladder cancer. The nanomotors [...]
Scientists Develop New System That Produces Drinking Water From Thin Air
UT Austin researchers have developed a biodegradable, biomass-based hydrogel that efficiently extracts drinkable water from the air, offering a scalable, sustainable solution for water access in off-grid communities, emergency relief, and agriculture. Discarded food [...]
AI Unveils Hidden Nanoparticles – A Breakthrough in Early Disease Detection
Deep Nanometry (DNM) is an innovative technique combining high-speed optical detection with AI-driven noise reduction, allowing researchers to find rare nanoparticles like extracellular vesicles (EVs). Since EVs play a role in disease detection, DNM [...]