Think of them as the Energizer Bunnies of the heart, tiny natural batteries that keep this vital organ beating 100,000 times a day as it pumps 2,000 gallons of blood throughout the human body.
That’s the subject of a new study by a team that includes two USF Health doctors who reported their findings in Circulation, the flagship journal of the American Heart Association.
“An injury like a heart attack creates a massive loss of cardiomyocytes, and you can’t renew them,” said Da-Zhi Wang, Ph.D., director of the Center for Regenerative Medicine in the USF Health Heart Institute and Morsani College of Medicine. “So, the question is how to make the heart repair itself.”
The study of heart repair has been a consistent theme of Dr. Wang’s research lab, which recently relocated to USF from Harvard Medical School where he was a professor working at Boston Children’s Hospital. Dr. Wang, now a professor of Internal Medicine and Molecular Pharmacology and Physiology in the Morsani College of Medicine, is a senior author of the study, “Reduced Mitochondrial Protein Translation Promotes Cardiomyocyte Proliferation and Heart Regeneration.” The paper addresses how the activities of mitochondria, which reside inside cardiomyocyte cells, are vital in repairing a damaged heart and even in preventing future heart attacks or coronary disease.
“The key element of this study is the link to cardiac regeneration,” said John Mably, Ph.D., another author of the study. “If you want to have your heart functioning into your 90s, this will be of interest to you, or anyone who has heart disease or had a heart attack.”
Dr. Mably is an associate professor of Internal Medicine in the Morsani College of Medicine and a member of the Center for Regenerative Medicine and USF Health Heart Institute. The USF Health team is supported by the USF Health Heart Institute in the Morsani College of Medicine and grants from the National Institutes of Health. Dr. Jinghai Chen (who trained with Dr. Wang) and members of his lab at the Zhejiang University School of Medicine in China were also authors on the paper.
Cardiomyocytes are the building blocks of cardiac tissue and essential to the normal function of the heart. Because the heart is constantly contracting, it requires an immense amount of energy, which is produced by the mitochondria, the tiny sub-cellular structures often referred to as the powerhouse of the cell. Since mitochondrial protein synthesis is critical to its structure, as well as normal cardiac function, the authors focused much of their study on how alteration of the mitochondrial protein balance affects heart health.
“The heart muscle contracts from early development to the day you die, so it requires a huge amount of energy to run,” Dr. Mably added. “That’s what mitochondria provide; it’s like the gasoline you need to run your car.”
The importance of mitochondria in normal heart function is well recognized and recent studies have implicated changes in mitochondrial metabolism with some forms of heart disease. This work evolved from a previous study performed by this group. They showed that loss of a protein called MRPS5 in the developing heart leads to cardiac defects and embryonic death; loss of this gene at stages after birth led to enlargement of the heart and eventual failure. The cause of these cardiac abnormalities was shown to stem from an imbalance in the communication between the mitochondria and the nucleus of the cell.
In this new study, the authors examine the effects of decreased MRPS5, rather than its complete loss, on cardiomyocyte proliferation. Major damage from injury to the heart, often as a result of a severe heart attack, can lead to heart failure because the heart is no longer able to contract normally. This is because the damaged tissue in the adult myocardium, the muscle layer of the heart, is unable to repair itself after injury. These scientist found that a slight reduction of mitochondrial activity in the adult heart could facilitate heart regeneration after injury to the heart, which could lead to a new avenue of treating heart attack and other heart disease.
“We hope to be working with the pharmaceutical industry and learn how to better protect or repair hearts from damage,” Dr. Wang said. “Currently, clinicians can only do so much for a heart attack. This approach could help the heart grow back to normal. We might be able to regrow or repair the heart by using a gene therapy approach.”
Like the Energizer Bunny, this could lead to a new way of treating heart disease to allow older hearts “to keep on going and going…”
More information: Feng Gao et al, Reduced Mitochondrial Protein Translation Promotes Cardiomyocyte Proliferation and Heart Regeneration, Circulation (2023). DOI: 10.1161/CIRCULATIONAHA.122.061192

News
Baffling Scientists for Centuries: New Study Unravels Mystery of Static Electricity
ISTA physicists demonstrate that contact electrification depends on the contact history of materials. For centuries, static electricity has intrigued and perplexed scientists. Now, researchers from the Waitukaitis group at the Institute of Science and [...]
Tumor “Stickiness” – Scientists Develop Potential New Way To Predict Cancer’s Spread
UC San Diego researchers have developed a device that predicts breast cancer aggressiveness by measuring tumor cell adhesion. Weakly adherent cells indicate a higher risk of metastasis, especially in early-stage DCIS. This innovation could [...]
Scientists Just Watched Atoms Move for the First Time Using AI
Scientists have developed a groundbreaking AI-driven technique that reveals the hidden movements of nanoparticles, essential in materials science, pharmaceuticals, and electronics. By integrating artificial intelligence with electron microscopy, researchers can now visualize atomic-level changes that were [...]
Scientists Sound Alarm: “Safe” Antibiotic Has Led to an Almost Untreatable Superbug
A recent study reveals that an antibiotic used for liver disease patients may increase their risk of contracting a dangerous superbug. An international team of researchers has discovered that rifaximin, a commonly prescribed antibiotic [...]
Scientists Discover Natural Compound That Stops Cancer Progression
A discovery led by OHSU was made possible by years of study conducted by University of Portland undergraduates. Scientists have discovered a natural compound that can halt a key process involved in the progression [...]
Scientists Just Discovered an RNA That Repairs DNA Damage – And It’s a Game-Changer
Our DNA is constantly under threat — from cell division errors to external factors like sunlight and smoking. Fortunately, cells have intricate repair mechanisms to counteract this damage. Scientists have uncovered a surprising role played by [...]
What Scientists Just Discovered About COVID-19’s Hidden Death Toll
COVID-19 didn’t just claim lives directly—it reshaped mortality patterns worldwide. A major international study found that life expectancy plummeted across most of the 24 analyzed countries, with additional deaths from cardiovascular disease, substance abuse, and mental [...]
Self-Propelled Nanoparticles Improve Immunotherapy for Non-Invasive Bladder Cancer
A study led by Pohang University of Science and Technology (POSTECH) and the Institute for Bioengineering of Catalonia (IBEC) in South Korea details the creation of urea-powered nanomotors that enhance immunotherapy for bladder cancer. The nanomotors [...]
Scientists Develop New System That Produces Drinking Water From Thin Air
UT Austin researchers have developed a biodegradable, biomass-based hydrogel that efficiently extracts drinkable water from the air, offering a scalable, sustainable solution for water access in off-grid communities, emergency relief, and agriculture. Discarded food [...]
AI Unveils Hidden Nanoparticles – A Breakthrough in Early Disease Detection
Deep Nanometry (DNM) is an innovative technique combining high-speed optical detection with AI-driven noise reduction, allowing researchers to find rare nanoparticles like extracellular vesicles (EVs). Since EVs play a role in disease detection, DNM [...]
Inhalable nanoparticles could help treat chronic lung disease
Nanoparticles designed to release antibiotics deep inside the lungs reduced inflammation and improved lung function in mice with symptoms of chronic obstructive pulmonary disease By Grace Wade Delivering medication to the lungs with inhalable nanoparticles [...]
New MRI Study Uncovers Hidden Lung Abnormalities in Children With Long COVID
Long COVID is more than just lingering symptoms—it may have a hidden biological basis that standard medical tests fail to detect. A groundbreaking study using advanced MRI technology has uncovered significant lung abnormalities in [...]
AI Struggles with Abstract Thought: Study Reveals GPT-4’s Limits
While GPT-4 performs well in structured reasoning tasks, a new study shows that its ability to adapt to variations is weak—suggesting AI still lacks true abstract understanding and flexibility in decision-making. Artificial Intelligence (AI), [...]
Turning Off Nerve Signals: Scientists Develop Promising New Pancreatic Cancer Treatment
Pancreatic cancer reprograms nerve cells to fuel its growth, but blocking these connections can shrink tumors and boost treatment effectiveness. Pancreatic cancer is closely linked to the nervous system, according to researchers from the [...]
New human antibody shows promise for Ebola virus treatment
New research led by scientists at La Jolla Institute for Immunology (LJI) reveals the workings of a human antibody called mAb 3A6, which may prove to be an important component for Ebola virus therapeutics. [...]
Early Alzheimer’s Detection Test – Years Before Symptoms Appear
A new biomarker test can detect early-stage tau protein clumping up to a decade before it appears on brain scans, improving early Alzheimer’s diagnosis. Unlike amyloid-beta, tau neurofibrillary tangles are directly linked to cognitive decline. Years [...]