Chemical engineers at the University of British Columbia have created a new system that both captures and treats PFAS substances—commonly referred to as “forever chemicals”—in a unified process.
Per- and polyfluoroalkyl substances (PFAS) are widely used in manufacturing consumer goods like waterproof clothing due to their resistance to heat, water, and stains. However, they are also pollutants, often ending up in surface and groundwater worldwide, where they have been linked to cancer, liver damage, and other health issues.
“PFAS are notoriously difficult to break down, whether they’re in the environment or in the human body,” explained lead researcher Dr. Johan Foster, an associate professor of chemical and biological engineering in the faculty of applied science. “Our system will make it possible to remove and destroy these substances in the water supply before they can harm our health.”
Catch and destroy
The UBC system combines an activated carbon filter with a special, patented catalyst that traps harmful chemicals and breaks them down into harmless components on the filter material. Scientists refer to this trapping of chemical components as adsorption.
“The whole process is fairly quick, depending on how much water you’re treating,” said Dr. Foster. “We can put huge volumes of water through this catalyst, and it will adsorb the PFAS and destroy it in a quick two-step process. Many existing solutions can only adsorb while others are designed to destroy the chemicals. Our catalyst system can do both, making it a long-term solution to the PFAS problem instead of just kicking the can down the road.”
No light? No problem
Like other water treatments, the UBC system requires ultraviolet light to work, but it does not need as much UV light as other methods.
During testing, the UBC catalyst consistently removed more than 85 percent of PFOA (perfluorooctanoic acid, a type of forever chemical) even under low light conditions.
“Our catalyst is not limited by ideal conditions. Its effectiveness under varying UV light intensities ensures its applicability in diverse settings, including regions with limited sunlight exposure,” said Dr. Raphaell Moreira, a professor at Universität Bremen who conducted the research while working at UBC.
For example, a northern municipality that gets little sun could still benefit from this type of PFAS solution.
“While the initial experiments focused on PFAS compounds, the catalyst’s versatility suggests its potential for removing other types of persistent contaminants, offering a promising solution to the pressing issues of water pollution,” explained Dr. Moreira.
From municipal water to industry cleanups
The team believes the catalyst could be a low-cost, effective solution for municipal water systems as well as specialized industrial projects like waste stream cleanup.
They have set up a company, ReAct Materials, to explore commercial options for their technology.
“Our catalyst can eliminate up to 90 percent of forever chemicals in water in as little as three hours—significantly faster than comparable solutions on the market. And because it can be produced from forest or farm waste, it’s more economical and sustainable compared to the more complex and costly methods currently in use,” said Dr. Foster.
Reference: “Hybrid graphenic and iron oxide photocatalysts for the decomposition of synthetic chemicals” by Raphaell Moreira, Ehsan B. Esfahani, Fatemeh A. Zeidabadi, Pani Rostami, Martin Thuo, Madjid Mohseni and Earl J. Foster, 21 August 2024, Communications Engineering.
DOI: 10.1038/s44172-024-00267-4
The research was supported by an NSERC Discovery grant.
News
World First: Stem Cell Transplant Restores Vision in Multiple People
A radical stem cell transplant has significantly improved the blurry vision of three people with severe damage to their cornea. The clinical trial, which took place in Japan, is the first of its kind in the world, [...]
Clinical Trial: Mushroom Supplement May Halt Prostate Cancer Growth
The bidirectional research examines both laboratory findings and human clinical trial data, revealing that the medicinal use of white button mushrooms reduces the type of cells that suppress the immune system and facilitate the [...]
Scientists propose drug-free method to combat antibiotic-resistant bacteria
Recent estimates indicate that deadly antibiotic-resistant infections will rapidly escalate over the next quarter century. More than 1 million people died from drug-resistant infections each year from 1990 to 2021, a recent study reported, with [...]
New study shows how salmonella tricks gut defenses to cause infection
A new UC Davis Health study has uncovered how Salmonella bacteria, a major cause of food poisoning, can invade the gut even when protective bacteria are present. The research, published in the Proceedings of the National Academy [...]
Chlamydia vaccine shows early promise in mice
An experimental vaccine has shown promise in protecting against the sexually transmitted disease chlamydia, researchers report. Lab mice given the vaccine were able to rapidly clear subsequent chlamydia infections, and were less likely to [...]
Contradictory Discovery: Our Innate Immune System May Fuel Cancer Development
MSK researchers discovered that the innate immune system’s chronic activation due to issues in the Mre11 complex can lead to cancer, highlighting new therapeutic targets. In addition to defending against pathogens, the body’s innate [...]
New study links circadian gene variants to winter depression
Findings suggest that PER3 gene variants prevent adrenal adaptation to winter daylight, leading to serotonin disruption and depression-like behaviors. A recent study in Nature Metabolism used humanized mice with modified PERIOD3 gene variants (P415A and H417R) [...]
Quantum Leap for MRI: Atomic Sensors Unlock New Imaging Potential
New atomic sensor technology enhances MRI quality control by tracking hyperpolarized molecules in real-time, with potential benefits for various scientific fields. Magnetic resonance imaging (MRI) is a fundamental tool in modern medicine, offering detailed [...]
MethylGPT unlocks DNA secrets for age and disease prediction
By harnessing advanced AI, MethylGPT decodes DNA methylation with unprecedented accuracy, offering new paths for age prediction, disease diagnosis, and personalized health interventions. In a recent study posted to the bioRxiv preprint* server, researchers developed a [...]
“Astonishing” – Scientists Unveil First Blueprint of the Most Complex Molecular Machine in Human Biology
Researchers unveil the inner mechanisms of the most intricate and complex molecular machine in human biology. Scientists at the Centre for Genomic Regulation (CRG) in Barcelona have developed the first comprehensive blueprint of the [...]
Breakthrough research reveals how to target malignant DNA in aggressive cancers
Scientists have discovered a way to target elusive circular fragments of DNA that drive the survival of some of the most aggressive cancers, paving the way for future treatments. In three groundbreaking papers published [...]
How bacteria trigger colon cancer
In a recent study published in Nature, scientists used murine models to investigate how certain bacteria, such as Escherichia coli strains that contain a polyketide synthase (pks) island encoding enzymes that produce colibactin genotoxin, could increase the [...]
Nanoparticles designed to trap and neutralise large amounts of SARS-CoV2
(Nanowerk News) Researchers from the IBB-UAB have developed a new class of nanostructures capable of trapping and neutralising large quantities of the SARS-CoV2 virus particles, both in liquid solutions and on the surface of [...]
Nanodiscs: What Are They and How Are They Shaping the Future of Medicine?
Nanodiscs are synthetic phospholipid particles with a distinct morphology and size that enhance their efficiency in drug delivery applications.1 First developed by Sligar et al. in the early 2000s, these model membrane systems measure around 10 [...]
New Discovery Reveals How Ovarian Cancer Starves Immune Cells
Researchers discovered that ovarian tumors hinder T cells’ energy supply by trapping a key protein, blocking lipid uptake. A new approach to reprogram T cells could enhance immunotherapy for aggressive cancers. Researchers at Weill Cornell [...]
Innovative Drug-Design Strategies to Overcome Antibacterial Resistance
Antibacterial resistance occurs when antibiotics fail to treat bacterial infections. This incidence is considered one of the top global health threats, stemming from the misuse or overuse of antibiotics in humans and animals.1 The [...]