Researchers developed a light yet strong material by combining two unexpected ingredients—DNA and glass.
Working at the nanoscale provides scientists with a deep understanding and precision in crafting and analyzing materials. In broader-scale production, and even in natural settings, numerous materials are susceptible to defects and contaminants that can compromise their intricate architecture. Such vulnerabilities can cause them to fracture under pressure. This is particularly evident in most types of glass, leading to its reputation as a fragile material.
Scientists at the Columbia University, the University of Connecticut, and the U.S. Department of Energy's (DOE) Brookhaven National Laboratory were able to fabricate a pure form of glass and coat specialized pieces of DNA with it to create a material that was not only stronger than steel, but incredibly lightweight. Materials that possess both of these qualities are uncommon, and further research could lead to novel engineering and defense applications. The results were published in the journal Cell Reports Physical Science.
DNA—The Building Blocks for Life and More
In living things, deoxyribonucleic acid, more commonly known as DNA, carries biological information that instructs the cells of organisms on how to form, grow, and reproduce. The material DNA is made of is known as a polymer, a class of tough, elastic materials that includes plastic and rubber. Their resilience and simplicity have intrigued material scientists and inspired many interesting experiments. Oleg Gang, a materials scientist at the Center for Functional Nanomaterials (CFN), a DOE Office of Science User Facility at Brookhaven Lab, and a professor at Columbia University, has been leveraging DNA's unique properties for materials synthesis for years, resulting in numerous discoveries. This novel technology has inspired an array of innovative applications—from drug delivery to electronics.
These blocks then cling together to form a larger lattice—a structure with a repeating pattern. This process allows scientists to build 3D-ordered nanomaterials from DNA and integrate inorganic nanoparticles and proteins, as demonstrated by the group's previous studies. After gaining an understanding and control of this unique assembly process, Gang, Michelson, and their team were then able to explore what could be achieved when that biomolecular scaffolding was used to create silica frameworks that preserve the scaffold architecture.
"We focused on using DNA as a programmable nanomaterial to form a complex 3D scaffold," said Michelson, "and we wanted to explore how this scaffold will perform mechanically when transferred into more stable solid-state materials. We explored having this self-assembling material cast in silica, the main ingredient in glass, and its potential."
Michelson's work in this field earned him the Robert Simon Memorial Prize at Columbia University. His research into DNA frameworks has explored a range of characteristics and applications, from mechanical properties to superconductivity. Much like the structures he's built upon, Michelson's work continues to grow and build as it takes on new layers of information from these exciting experiments.
A microscopic peek of how these DNA strands form shapes that are built into larger lattice structures that are coated in silica. CFN, JEOL-1400 TEM, and Hitachi-4800 SEM. Credit: Brookhaven National Laboratory
"We were very interested to explore how we can enhance mechanical properties of regular materials, like glass, but structuring them at the nanoscale," said Gang.
The scientists used a very thin layer of silica glass, only about 5 nm or a few hundred atoms thick, to coat the DNA frames, leaving inner spaces open and ensuring that the resulting material is ultra-light. On this small scale, the glass is insensitive to flaws or defects, providing a strength that isn't seen in larger pieces of glass where cracks develop and cause it to shatter. The team wanted to know exactly how strong this material was though, which, at this scale, required some very specialized equipment.
Strength Under Pressure
There are simple ways to check if something is sturdy. Poking, pushing, and leaning on surfaces and observing their behavior can often provide helpful information. Do they bend, creak, buckle, or stand firm under the stress? This is a simple, but effective way to get an understanding of an object's strength, even without tools to measure it precisely. How does one press on an object that's too small to see, though?
"To measure the strength of these tiny structures, we employed a technique called nanoindentation," explained Michelson. "Nanoindentation is a mechanical test on a very small scale performed using a precise instrument that can apply and measure resistive forces. Our samples are only a few microns thick, about a thousandth of a millimeter, so it's impossible to measure these materials by conventional means. Using an electron microscope and nanoindentation together, we can simultaneously measure mechanical behavior and observe the process of the compression."
A graph comparing the nanolattice in this experiment to the relative strength of various materials. Credit: Brookhaven National Laboratory
As the tiny device compresses, or indents, the sample, researchers can take measurements and observe mechanical properties. They can then see what happens to the material as the compression is released and the sample returns to its original state. If there are any cracks that form or if the structure fails at any point, this valuable data can be recorded.
When put to the test, the glass-coated DNA lattice was shown to be four times stronger than steel! What was even more interesting was that its density was about five times lower. While there are materials that are strong and considered fairly lightweight, it has never been achieved to this degree.
This technique wasn't something that was always readily available at CFN, however.
"We collaborated with Seok-Woo Lee, an associate professor at the University of Connecticut, who has expertise in the mechanical properties of materials," said Gang. "He was a CFN user who leveraged some of our capabilities and resources, like electron microscopes, which is how we developed a relationship with him. We initially didn't have the capability for nanoindentation, but he led us to the proper tools and got us on the right track. This is another example of how scientists from academia and national labs benefit from working together. We now have these tools and the expertise to take studies like this even further."
Building Something New and Exciting
While there is still a lot of work to be done before scaling up and thinking about the myriad of applications for such a material, there are still reasons for materials scientists to be excited about what this means going forward. The team plans to look at other materials, like carbide ceramics, that are even stronger than glass to see how they work and behave. This could lead to even stronger lightweight materials in the future.
While his career is still in its early stages, Michelson has already achieved so much and is already eager to start on the next phases of his research.
"It's a wonderful opportunity to be a postdoc at Brookhaven Lab, especially after being a Columbia University student who would work at the CFN quite often," recalled Michelson. "This is what led me to continue there as a postdoc. The capabilities that we have at the CFN, especially in regard to imaging, really helped to propel my work."
Reference: "High-strength, lightweight nano-architected silica" by Aaron Michelson, Tyler J. Flanagan, Seok-Woo Lee and Oleg Gang, 27 June 2023, Cell Reports Physical Science.
DOI: 10.1016/j.xcrp.2023.101475

News
Chernobyl scientists discover black fungus feeding on deadly radiation
It looks pretty sinister, but it might actually be incredibly helpful When reactor number four in Chernobyl exploded, it triggered the worst nuclear disaster in history, one which the surrounding area still has not [...]
Long COVID Is Taking A Silent Toll On Mental Health, Here’s What Experts Say
Months after recovering from COVID-19, many people continue to feel unwell. They speak of exhaustion that doesn’t fade, difficulty breathing, or an unsettling mental haze. What’s becoming increasingly clear is that recovery from the [...]
Study Delivers Cancer Drugs Directly to the Tumor Nucleus
A new peptide-based nanotube treatment sneaks chemo into drug-resistant cancer cells, providing a unique workaround to one of oncology’s toughest hurdles. CiQUS researchers have developed a novel molecular strategy that allows a chemotherapy drug to [...]
Scientists Begin $14.2 Million Project To Decode the Body’s “Hidden Sixth Sense”
An NIH-supported initiative seeks to unravel how the nervous system tracks and regulates the body’s internal organs. How does your brain recognize when it’s time to take a breath, when your blood pressure has [...]
Scientists Discover a New Form of Ice That Shouldn’t Exist
Researchers at the European XFEL and DESY are investigating unusual forms of ice that can exist at room temperature when subjected to extreme pressure. Ice comes in many forms, even when made of nothing but water [...]
Nobel-winning, tiny ‘sponge crystals’ with an astonishing amount of inner space
The 2025 Nobel Prize in chemistry was awarded to Richard Robson, Susumu Kitagawa and Omar Yaghi on Oct. 8, 2025, for the development of metal-organic frameworks, or MOFs, which are tunable crystal structures with extremely [...]
Harnessing Green-Synthesized Nanoparticles for Water Purification
A new review reveals how plant- and microbe-derived nanoparticles can power next-gen water disinfection, delivering cleaner, safer water without the environmental cost of traditional treatments. A recent review published in Nanomaterials highlights the potential of green-synthesized nanomaterials (GSNMs) in [...]
Brainstem damage found to be behind long-lasting effects of severe Covid-19
Damage to the brainstem - the brain's 'control center' - is behind long-lasting physical and psychiatric effects of severe Covid-19 infection, a study suggests. Using ultra-high-resolution scanners that can see the living brain in [...]
CT scan changes over one year predict outcomes in fibrotic lung disease
Researchers at National Jewish Health have shown that subtle increases in lung scarring, detected by an artificial intelligence-based tool on CT scans taken one year apart, are associated with disease progression and survival in [...]
AI Spots Hidden Signs of Disease Before Symptoms Appear
Researchers suggest that examining the inner workings of cells more closely could help physicians detect diseases earlier and more accurately match patients with effective therapies. Researchers at McGill University have created an artificial intelligence tool capable of uncovering [...]
Breakthrough Blood Test Detects Head and Neck Cancer up to 10 Years Before Symptoms
Mass General Brigham’s HPV-DeepSeek test enables much earlier cancer detection through a blood sample, creating a new opportunity for screening HPV-related head and neck cancers. Human papillomavirus (HPV) is responsible for about 70% of [...]
Study of 86 chikungunya outbreaks reveals unpredictability in size and severity
The symptoms come on quickly—acute fever, followed by debilitating joint pain that can last for months. Though rarely fatal, the chikungunya virus, a mosquito-borne illness, can be particularly severe for high-risk individuals, including newborns and older [...]
Tiny Fat Messengers May Link Obesity to Alzheimer’s Plaque Buildup
Summary: A groundbreaking study reveals how obesity may drive Alzheimer’s disease through tiny messengers called extracellular vesicles released from fat tissue. These vesicles carry lipids that alter how quickly amyloid-β plaques form, a hallmark of [...]
Ozone exposure weakens lung function and reshapes the oral microbiome
Scientists reveal that short-term ozone inhalation doesn’t just harm the lungs; it reshapes the microbes in your mouth, with men facing the greatest risks. Ozone is a toxic environmental pollutant with wide-ranging effects on [...]
New study reveals molecular basis of Long COVID brain fog
Even though many years have passed since the start of the COVID-19 pandemic, the effects of infection with SARS-CoV-2 are not completely understood. This is especially true for Long COVID, a chronic condition that [...]
Scientists make huge Parkinson’s breakthrough as they discover ‘protein trigger’
Scientists have, for the first time, directly visualised the protein clusters in the brain believed to trigger Parkinson's disease, bringing them one step closer to potential treatments. Parkinson's is a progressive incurable neurological disorder [...]