How one regulatory protein acts as a multi-tool of bacterial cell wall remodeling.
For bacterial cells to grow and divide, their cell walls need continual remodeling. This process requires a careful balance of lytic enzymes and peptidoglycan production. A team of researchers headed by Martin Thanbichler discovered that a central regulator can control completely different classes of autolysins. Since many antibiotics attack the bacterial cell wall, this discovery could pave the way for new treatment methods against bacterial infections.
During evolution, cells have developed a wide range of strategies to strengthen their envelope against internal osmotic pressure, thus allowing them to grow in a variety of different environments. Most bacterial species synthesize a semi-rigid cell wall surrounding the cytoplasmic membrane, whose main component, peptidoglycan, forms a dense meshwork that encases the cell.
In addition to its protective role, the cell wall also serves as a means to generate specific cell shapes, such as spheres, rods, or spirals, thus facilitating motility, surface colonization, and pathogenicity.
The research team led by Martin Thanbichler, Max Planck Fellow at the Max Planck Institute for Terrestrial Microbiology and Professor of Microbiology at the University of Marburg, has set out to unravel the composition and function of the autolytic machinery. Their studies focus on the crescent-shaped bacterium Caulobacter crescentus, which is found in freshwater environments and widely used as a model organism to study fundamental cellular processes in bacteria.
According to Thanbichler, studying the function of autolysins has been a challenging task. “While we know a lot about the synthetic machinery, the autolysins proved to be a tough nut to crack.” Maria Billini, a postdoctoral researcher in Thanbichler’s team, adds: “Bacteria usually harbor many types of autolysins from different enzyme families with different targets. This means that these proteins are highly redundant, and the deletion of individual autolysin genes often has little effect on cell morphology and growth.”
Versatile regulator
Analysis of potential autolysin regulators by co-immunoprecipitation screening and in vitro protein-protein interaction assays has revealed that a factor called DipM plays a pivotal role in bacterial cell wall remodeling. This key regulator, a soluble periplasmic protein, surprisingly interacts with several classes of autolysins as well as a cell division factor, showing a promiscuity that was previously unknown for this type of regulator.
DipM was able to stimulate the activity of two peptidoglycan-cleaving enzymes with completely different activities and folding, making it the first identified regulator that can control two classes of autolysins. Notably, the results also indicate that DipM uses a single interface to interact with its various targets.
“Disruption of DipM leads to the loss of regulation at various points of the cell wall remodeling and division process and ultimately kills the cell,” says doctoral student Adrian Izquierdo Martinez, first author of the study. “Its proper function as a coordinator of autolysin activity is thus critical for proper cell shape maintenance and cell division in C. crescentus.”
The comprehensive characterization of DipM revealed a novel interaction network, including a self-reinforcing loop that connects lytic transglycosylases and possibly other autolysins to the core of the cell division apparatus of C. crescentus, and very likely also other bacteria. Thus, DipM coordinates a complex autolysin network whose topology greatly differs from that of previously studied autolysin systems. Martin Thanbichler points out: “The study of such multi-enzyme regulators, whose malfunction affects several cell wall-related processes at the same time, not only helps us to understand how the cell wall responds to changes in the cell or the environment. It can also contribute to the development of new therapeutic strategies that combat bacteria by disrupting several autolytic pathways simultaneously.”
Reference: “DipM controls multiple autolysins and mediates a regulatory feedback loop promoting cell constriction in Caulobacter crescentus” by Adrian Izquierdo-Martinez, Maria Billini, Vega Miguel-Ruano, Rogelio Hernández-Tamayo, Pia Richter, Jacob Biboy, María T. Batuecas, Timo Glatter, Waldemar Vollmer, Peter L. Graumann, Juan A. Hermoso, and Martin Thanbichler, 11 July 2023, Nature Communications.
DOI: 10.1038/s41467-023-39783-w

News
The CDC buried a measles forecast that stressed the need for vaccinations
This story was originally published on ProPublica, a nonprofit newsroom that investigates abuses of power. Sign up to receive our biggest stories as soon as they’re published. ProPublica — Leaders at the Centers for Disease Control and Prevention [...]
Light-Driven Plasmonic Microrobots for Nanoparticle Manipulation
A recent study published in Nature Communications presents a new microrobotic platform designed to improve the precision and versatility of nanoparticle manipulation using light. Led by Jin Qin and colleagues, the research addresses limitations in traditional [...]
Cancer’s “Master Switch” Blocked for Good in Landmark Study
Researchers discovered peptides that permanently block a key cancer protein once thought untreatable, using a new screening method to test their effectiveness inside cells. For the first time, scientists have identified promising drug candidates [...]
AI self-cloning claims: A new frontier or a looming threat?
Chinese scientists claim that some AI models can replicate themselves and protect against shutdown. Has artificial intelligence crossed the so-called red line? Chinese researchers have published two reports on arXiv claiming that some artificial [...]
New Drug Turns Human Blood Into Mosquito-Killing Weapon
Nitisinone, a drug for rare diseases, kills mosquitoes when present in human blood and may become a new tool to fight malaria, offering longer-lasting, environmentally safer effects than ivermectin. Controlling mosquito populations is a [...]
DNA Microscopy Creates 3D Maps of Life From the Inside Out
What if you could take a picture of every gene inside a living organism—not with light, but with DNA itself? Scientists at the University of Chicago have pioneered a revolutionary imaging technique called volumetric DNA microscopy. It builds [...]
Scientists Just Captured the Stunning Process That Shapes Chromosomes
Scientists at EMBL have captured how human chromosomes fold into their signature rod shape during cell division, using a groundbreaking method called LoopTrace. By observing overlapping DNA loops forming in high resolution, they revealed that large [...]
Bird Flu Virus Is Mutating Fast – Scientists Say Our Vaccines May Not Be Enough
H5N1 influenza is evolving rapidly, weakening the effectiveness of existing antibodies and increasing its potential threat to humans. Scientists at UNC Charlotte and MIT used high-performance computational modeling to analyze thousands of viral protein-antibody interactions, revealing [...]
Revolutionary Cancer Vaccine Targets All Solid Tumors
The method triggers immune responses that inhibit melanoma, triple-negative breast cancer, lung carcinoma, and ovarian cancer. Cancer treatment vaccines have been in development since 2010, when the first was approved for prostate cancer, followed [...]
Scientists Uncover Hidden Protein Driving Autoimmune Attacks
Scientists have uncovered a critical piece of the puzzle in autoimmune diseases: a protein that helps release immune response molecules. By studying an ultra-rare condition, researchers identified ArfGAP2 as a key player in immune [...]
Mediterranean neutrino observatory sets new limits on quantum gravity
Quantum gravity is the missing link between general relativity and quantum mechanics, the yet-to-be-discovered key to a unified theory capable of explaining both the infinitely large and the infinitely small. The solution to this [...]
Challenging Previous Beliefs: Japanese Scientists Discover Hidden Protector of Heart
A Japanese research team found that the oxidized form of glutathione (GSSG) may protect heart tissue by modifying a key protein, potentially offering a novel therapeutic approach for ischemic heart failure. A new study [...]
Millions May Have Long COVID – So Why Can’t They Get Diagnosed?
Millions of people in England may be living with Long Covid without even realizing it. A large-scale analysis found that nearly 10% suspect they might have the condition but remain uncertain, often due to [...]
Researchers Reveal What Happens to Your Brain When You Don’t Get Enough Sleep
What if poor sleep was doing more than just making you tired? Researchers have discovered that disrupted sleep in older adults interferes with the brain’s ability to clean out waste, leading to memory problems [...]
How to prevent chronic inflammation from zombie-like cells that accumulate with age
In humans and other multicellular organisms, cells multiply. This defining feature allows embryos to grow into adulthood, and enables the healing of the many bumps, bruises and scrapes along the way. Certain factors can [...]
Breakthrough for long Covid patients who lost sense of smell
A breakthrough nasal surgery has restored the sense of smell for a dozen long Covid patients. Experts at University College London Hospitals NHS Foundation Trust successfully employed a technique typically used for correcting blocked nasal passages, [...]