When shrimp shell nanoparticles were mixed into cement paste, the material became substantially stronger — researchers propose an innovation that could lead to less seafood waste and fewer carbon dioxide emissions from concrete production.
A team of Washington State University and Pacific Northwest National Laboratory scientists created nanocrystals and nanofibers of chitin, the second-most common biopolymer in nature, from waste shrimp shells, as reported in the journal Cement and Concrete Composites.
When such small chitin bits, about 1,000 times tinier than a human hair, were mixed into cement paste, the resulting product was up to 40% stronger. The hardening time of the cement was also prolonged by more than an hour, which is a desirable property for lengthy transport and hot weather concrete work.
The concrete industry is under pressure to reduce its carbon emissions from the production of cement. By developing these novel admixtures that enhance the strength of concrete, we can help reduce the amount of required cement and lower the carbon emissions of concrete.
Somayeh Nassiri, Associate Professor, University of California
Nassiri headed the research at WSU.
Concrete is used in vital infrastructure like buildings, bridges, and roads all over the world. It is the second most used material on the planet after water. Cement production is a carbon-intensive process that necessitates the use of fossil fuels to achieve the needed high temperatures (1500 °C).
The limestone used in its manufacturing also decomposes, releasing additional carbon dioxide. Cement production accounts for about 15% of industrial energy consumption and 5% of global emissions of greenhouse gases.
According to Nassiri, the issue of durability primarily motivates the high consumption of the material—concrete cracks quickly and must be replaced or repaired frequently.
In the meantime, seafood waste is a major issue for the fishing industry, which produces between 6 million and 8 million pounds of waste per year globally. According to Hui Li, research assistant professor in WSU’s Composite Materials and Engineering Center and corresponding author on the paper, the majority of that waste is thrown into the sea.
In the current world, dealing with climate change through the circular economy, we want to use waste materials as much as possible. One person’s waste is another person’s treasure.
Somayeh Nassiri, Associate Professor, University of California
Scientists have worked to enhance concrete using cellulose, a common biopolymer. Cellulose additives would sometimes help the concrete and sometimes not, and the scientists could not figure out why this was.
The WSU team investigated chitin materials at the nanoscale in their research. Crab, shrimp, and lobster shells contain about 20-30% chitin, with the remaining being calcium carbonate, another useful additive for cement. In comparison to cellulose, chitin has an extra set of atoms—a functional group—that enables the scientists to regulate the charge on the surface of the molecules and, thus, how they act in the cement slurry.
“Being able to control the charge on the surface is an important piece to controlling how they function in cement. We could do that quite simply on the chitin because of the carboxyl group that sits in the chitin polymer,” said WSU Regents Professor Michael Wolcott, a corresponding author of the paper.
The success of the cement paste hardening came down to how the particles suspended themselves within the cement slurry and interacted with the cement particles.
“The chitin nanoparticles repel individual cement particles enough so that it changes the hydration properties of the cement particle within the system,” he said.
They were able to enhance and target the cement’s properties, such as its uniformity, setting time, resilience, and sturdiness, by adding processed nanocrystals of chitin to it. They discovered a 40% rise in the strength of the concrete’s bending capacity and a 12% increase in its ability to compress.
“Those are very significant numbers. If you can reduce the amount that you use and get the same mechanical function or structural function and double its lifetime, then you’re able to significantly reduce the carbon emissions of the built environment,” Wolcott said.
The scientists are now expecting to scale up their work so that they can produce the additive on a large scale. The study must also continue to achieve the same degree of improvement seen on the cement paste scale on the concrete scale.
Aside from the WSU researchers, the interdisciplinary team included Pacific Northwest National Laboratory scientists. The research was supported by the Department of Energy’s Advanced Research Projects Agency-Energy (ARPA E) program, which funds innovative and unconventional energy technology projects that have the potential to lead to emerging technologies.

News
Breakthrough for long Covid patients who lost sense of smell
A breakthrough nasal surgery has restored the sense of smell for a dozen long Covid patients. Experts at University College London Hospitals NHS Foundation Trust successfully employed a technique typically used for correcting blocked nasal passages, [...]
Scientists Invent Plastic That Can Dissolve In Seawater In Just A Few Hours
Plastic waste and pollution in the sea have been among the most serious environmental problems for decades, causing immense damage to marine life and ecosystems. However, a breakthrough discovery may offer a game-changing solution. [...]
Muscles from the 3D printer
Swiss researchers have developed a method for printing artificial muscles out of silicone. In the future, these could be used on both humans and robots. Swiss researchers have succeeded in printing artificial muscles out [...]
Beneficial genetic changes observed in regular blood donors
Researchers at the Francis Crick Institute have identified genetic changes in blood stem cells from frequent blood donors that support the production of new, non-cancerous cells. Understanding the differences in the mutations that accumulate [...]
Shocking Amounts of Microplastics in the Brain – It Could Be Increasing Our Risk of Dementia
The brain has higher concentrations of plastic particles compared to other organs, with increased levels found in dementia patients. In a comprehensive commentary published in Brain Medicine, researchers highlight alarming new evidence of microplastic accumulation [...]
Baffling Scientists for Centuries: New Study Unravels Mystery of Static Electricity
ISTA physicists demonstrate that contact electrification depends on the contact history of materials. For centuries, static electricity has intrigued and perplexed scientists. Now, researchers from the Waitukaitis group at the Institute of Science and [...]
Tumor “Stickiness” – Scientists Develop Potential New Way To Predict Cancer’s Spread
UC San Diego researchers have developed a device that predicts breast cancer aggressiveness by measuring tumor cell adhesion. Weakly adherent cells indicate a higher risk of metastasis, especially in early-stage DCIS. This innovation could [...]
Scientists Just Watched Atoms Move for the First Time Using AI
Scientists have developed a groundbreaking AI-driven technique that reveals the hidden movements of nanoparticles, essential in materials science, pharmaceuticals, and electronics. By integrating artificial intelligence with electron microscopy, researchers can now visualize atomic-level changes that were [...]
Scientists Sound Alarm: “Safe” Antibiotic Has Led to an Almost Untreatable Superbug
A recent study reveals that an antibiotic used for liver disease patients may increase their risk of contracting a dangerous superbug. An international team of researchers has discovered that rifaximin, a commonly prescribed antibiotic [...]
Scientists Discover Natural Compound That Stops Cancer Progression
A discovery led by OHSU was made possible by years of study conducted by University of Portland undergraduates. Scientists have discovered a natural compound that can halt a key process involved in the progression [...]
Scientists Just Discovered an RNA That Repairs DNA Damage – And It’s a Game-Changer
Our DNA is constantly under threat — from cell division errors to external factors like sunlight and smoking. Fortunately, cells have intricate repair mechanisms to counteract this damage. Scientists have uncovered a surprising role played by [...]
What Scientists Just Discovered About COVID-19’s Hidden Death Toll
COVID-19 didn’t just claim lives directly—it reshaped mortality patterns worldwide. A major international study found that life expectancy plummeted across most of the 24 analyzed countries, with additional deaths from cardiovascular disease, substance abuse, and mental [...]
Self-Propelled Nanoparticles Improve Immunotherapy for Non-Invasive Bladder Cancer
A study led by Pohang University of Science and Technology (POSTECH) and the Institute for Bioengineering of Catalonia (IBEC) in South Korea details the creation of urea-powered nanomotors that enhance immunotherapy for bladder cancer. The nanomotors [...]
Scientists Develop New System That Produces Drinking Water From Thin Air
UT Austin researchers have developed a biodegradable, biomass-based hydrogel that efficiently extracts drinkable water from the air, offering a scalable, sustainable solution for water access in off-grid communities, emergency relief, and agriculture. Discarded food [...]
AI Unveils Hidden Nanoparticles – A Breakthrough in Early Disease Detection
Deep Nanometry (DNM) is an innovative technique combining high-speed optical detection with AI-driven noise reduction, allowing researchers to find rare nanoparticles like extracellular vesicles (EVs). Since EVs play a role in disease detection, DNM [...]
Inhalable nanoparticles could help treat chronic lung disease
Nanoparticles designed to release antibiotics deep inside the lungs reduced inflammation and improved lung function in mice with symptoms of chronic obstructive pulmonary disease By Grace Wade Delivering medication to the lungs with inhalable nanoparticles [...]