Silver-based nanoparticle presence in everyday items has surged over the past decade. Silver is an efficient antibacterial agent but can harm the environment. A study published in the journal iScience aims to discern the relationship between microbial activity and silver, providing a means for limiting the unintended environmental impact of silver-based nanoparticles
Silver – An Effective Antibacterial Agent
Silver’s antimicrobial qualities have been known for centuries. Silver containers were revered for their capacity to keep dairy items from spoiling, and the Greeks employed silver creams to treat wound infections. Several commercial goods now use silver, although in a much more effective form.
Silver-based nanoparticles used in fabrics are advertised for their excellent resistance to odors. Medical supplies are readily layered with silver-based nanoparticles to restrict the growth of bacteria. Similarly, silver-based nanoparticles used in paints, countertops, and toys promise long-lasting antimicrobial characteristics.
Effects of Silver Nanoparticles on the Ecosystem
The generation of silver-based nanoparticles currently exceeds 600 metric tons, with most of it contaminating the environment through wastewater and solid waste.
The uncontrolled exposure to silver-based nanoparticles is a rising issue since these nanoparticles may harm naturally existing bacteria, marine environments, and even human health. Therefore, the modification of silver-based nanoparticle toxicity may contribute to enhanced antimicrobial technology and may limit undesirable environmental consequences after disposal.
Controlling silver-based nanoparticle toxicity necessitates controlling nanoparticle dissolution. The duration of this dissolution process is defined by parameters such as pH, the amount of sulfide, dissolved oxygen, the quantity of natural organic matter, and ambient light.
Manipulating Silver’s Toxicity
Silver ions are hazardous to bacteria as they may attach to various proteins, causing their activities to be disrupted. When these silver ions are discharged due to particle breakdown, they account for the majority of the antibacterial activity of silver nanoparticles. No harm is found when all of the oxygen is removed.
Antimicrobial action may be significantly boosted if nanoparticle breakdown is encouraged by acidification. Attempting to manipulate the dissolution of silver-based nanoparticles by changing the aqueous-based solution, on the other hand, might be a daunting prospect for regulating the nanoparticle’s complete existence.
Structure-Activity Relationship (SAR)
The next logical progression in the research of silver-based nanoparticles is to develop a structure-activity relationship (SAR). The optimal SAR would use the structural properties of a silver-based nanoparticle, such as the particle’s dimensions, as input and forecast the dissolution of silver as well as antibacterial activity.
The nanoparticles themselves pose a problem in producing such data. The most common techniques for producing silver-based nanoparticles produce materials with uncontrolled surface characteristics, size, and shape—the accuracy of the activity-structure relationships is reduced.
Basis of the Research
The link between silver-based nanoparticle architecture, silver dissolution, and silver’s antibacterial action was defined by the team. Several synthetic approaches were created or changed to create a massive collection of nanoparticles with individually adjusted surface chemistries, dimensions, and shapes.
The collection of nanoparticles allowed the team to untangle the effect of each variable on the dissolution, demonstrating the link between structural factors and dissolution performance unequivocally.
The team investigated the dynamics and equilibrium behavior of silver-based nanoparticle dissolution utilizing conventional techniques to obtain numerical data for structural characteristics comparison. The team also assessed the antimicrobial ability of similar samples.
Results of the Study
Utilizing a collection of silver-based nanoparticles customized to demonstrate a broad variety of surface chemistries, sizes, and shapes, this study evaluated how silver-based nanoparticle properties affect antibacterial effectiveness and their environmental effect.
The team highlighted that when there is a greater surface area of silver accessible, there is more dissolved silver. Similarly, the team ascertained that tiny particles dissolve to a higher degree than bigger particles for a similar mass fraction of silver, as expected by their proportionately greater surface areas.
For almost all substances, the dissolution rate was proportionate to the amount of dissolution; the nanoparticles that dissolved quicker also dissolved to a greater degree.
The team concluded that these discoveries offer new insight into silver’s chemistry at the nanoscale, and help to make room for the effective and safe usage of silver-based nanoparticles.

News
Study Shows Brain Signals Only Matter if They Arrive on Time
Signals are processed only if they reach the brain during brief receptive cycles. This timing mechanism explains how attention filters information and may inform therapies and brain-inspired technologies. It has long been recognized that [...]
Does Space-Time Really Exist?
Is time something that flows — or just an illusion? Exploring space-time as either a fixed “block universe” or a dynamic fabric reveals deeper mysteries about existence, change, and the very nature of reality. [...]
Unlocking hidden soil microbes for new antibiotics
Most bacteria cannot be cultured in the lab-and that's been bad news for medicine. Many of our frontline antibiotics originated from microbes, yet as antibiotic resistance spreads and drug pipelines run dry, the soil [...]
By working together, cells can extend their senses beyond their direct environment
The story of the princess and the pea evokes an image of a highly sensitive young royal woman so refined, she can sense a pea under a stack of mattresses. When it comes to [...]
Overworked Brain Cells May Hold the Key to Parkinson’s
Scientists at Gladstone Institutes uncovered a surprising reason why dopamine-producing neurons, crucial for smooth body movements, die in Parkinson’s disease. In mice, when these neurons were kept overactive for weeks, they began to falter, [...]
Old tires find new life: Rubber particles strengthen superhydrophobic coatings against corrosion
Development of highly robust superhydrophobic anti-corrosion coating using recycled tire rubber particles. Superhydrophobic materials offer a strategy for developing marine anti-corrosion materials due to their low solid-liquid contact area and low surface energy. However, [...]
This implant could soon allow you to read minds
Mind reading: Long a science fiction fantasy, today an increasingly concrete scientific goal. Researchers at Stanford University have succeeded in decoding internal language in real time thanks to a brain implant and artificial intelligence. [...]
A New Weapon Against Cancer: Cold Plasma Destroys Hidden Tumor Cells
Cold plasma penetrates deep into tumors and attacks cancer cells. Short-lived molecules were identified as key drivers. Scientists at the Leibniz Institute for Plasma Science and Technology (INP), working with colleagues from Greifswald University Hospital and [...]
This Common Sleep Aid May Also Protect Your Brain From Alzheimer’s
Lemborexant and similar sleep medications show potential for treating tau-related disorders, including Alzheimer’s disease. New research from Washington University School of Medicine in St. Louis shows that a commonly used sleep medication can restore normal sleep patterns and [...]
Sugar-Coated Nanoparticles Boost Cancer Drug Efficacy
A team of researchers at the University of Mississippi has discovered that coating cancer treatment carrying nanoparticles in a sugar-like material increases their treatment efficacy. They reported their findings in Advanced Healthcare Materials. Over a tenth of breast [...]
Nanoparticle-Based Vaccine Shows Promise in Fighting Cancer
In a study published in OncoImmunology, researchers from the German Cancer Research Center and Heidelberg University have created a therapeutic vaccine that mobilizes the immune system to target cancer cells. The researchers demonstrated that virus peptides combined [...]
Quantitative imaging method reveals how cells rapidly sort and transport lipids
Lipids are difficult to detect with light microscopy. Using a new chemical labeling strategy, a Dresden-based team led by André Nadler at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) and [...]
Ancient DNA reveals cause of world’s first recorded pandemic
Scientists have confirmed that the Justinian Plague, the world’s first recorded pandemic, was caused by Yersinia pestis, the same bacterium behind the Black Death. Dating back some 1,500 years and long described in historical texts but [...]
“AI Is Not Intelligent at All” – Expert Warns of Worldwide Threat to Human Dignity
Opaque AI systems risk undermining human rights and dignity. Global cooperation is needed to ensure protection. The rise of artificial intelligence (AI) has changed how people interact, but it also poses a global risk to human [...]
Nanomotors: Where Are They Now?
First introduced in 2004, nanomotors have steadily advanced from a scientific curiosity to a practical technology with wide-ranging applications. This article explores the key developments, recent innovations, and major uses of nanomotors today. A [...]
Study Finds 95% of Tested Beers Contain Toxic “Forever Chemicals”
Researchers found PFAS in 95% of tested beers, with the highest levels linked to contaminated local water sources. Per- and polyfluoroalkyl substances (PFAS), better known as forever chemicals, are gaining notoriety for their ability [...]