Shigella bacteria, which causes Shigellosis, is the primary cause of bacterial diarrhea and diarrheal death among juveniles under five years of age. Because of the antibiotic resistance of Shigella strains, no commercial vaccines are available to date.
An article published in Molecular Pharmaceutics presented an extension of a previous work that demonstrated the stabilization of “invasion plasmid antigen C” (IpaC) protein by using Shigella dysenteriae serotype 1 (Sd1)-based recombinant to induce immune responses in BALB/c mice. However, this work involved the administration of three intranasal doses of IpaC without an adjuvant.
The aim of this study was to increase patient compliance by reducing the dosing frequency. Based on previous screening results, the optimal protective dose of stabilized IpaC, 20 micrograms was encapsulated in biodegradable polymeric poly(lactide-co-glycolide) (PLGA) nanoparticles with approximately 370 nanometers in size and a single-dose nanovaccine was administered intranasally into BALB/c mice.
The results revealed a temporal increase in antibody production with improved cytokine response via nanovaccine administration compared to free IpaC, which was administered three times in a previous study. The vaccinated animals were protected from diarrhea, lethargy, and weight loss upon intraperitoneal challenge with a high dose of heterologous Shigella flexneri 2a, whereas all the control animals died within 36 hours after the challenge.
Overall, the created nanovaccine could be investigated as a potential non-invasive, cross-protective, single-dose, single-antigen Shigella vaccine that is scalable and eventually suitable for mass vaccination.
Shigellosis and Development of Nanovaccine
Shigellosis is an intestinal infection caused by Shigella bacteria. Symptoms generally start one to two days after exposure and include diarrhea, fever, abdominal pain, and the need to pass stools, even when the bowels are empty.
Most Shigella strains develop resistance to many antibiotics. Since an approved vaccine is still unavailable, formulating an effective Shigella vaccine candidate has been declared a public health priority by the World Health Organization (WHO).
Nanotechnology plays a unique role in vaccine design by providing them with enhanced specificity and potency. Nanoparticles of less than 500 nanometers are quickly taken up by antigens and hence serve as potential carriers for delivering vaccine antigens and adjuvants. Nanoparticles have advantages, such as improved antigen stability, targeted delivery, and long-term release, for which antigens/adjuvants are either encapsulated within or decorated on the surface of a nanoparticle.
Nanovaccine exhibits unique physicochemical characteristics. The role of a nanovaccine as a potent vaccine has been examined to boost their therapeutic activity by enhancing their stability, prolonging their circulation and site-specific accumulation, increasing their delivery according to various biological and external stimuli, and overcoming physiological barriers.
As an active immunogenic material that modulates the immune response, a nanovaccine enables antigen stability, enhances antigen processing and immunogenicity with targeted delivery, and prevents the burst release of antigens and adjuvants.
IpaC-Based Single Dose Nanovaccine for Shigellosis
Although there has been a great deal of effort to develop a Shigella vaccine that is both safe and effective, none has been clinically approved. Although conserved recombinant subunit vaccines can be cross-protective in nature, adjuvants are required to provide sufficient immunogenicity, which may present safety issues.
Furthermore, the administration of multiple doses of subunit proteins along with adjuvants in previous studies did not result in sufficient immunogenicity and effective cross-protection. Previously, a self-adjuvant vaccine was created by stabilizing IpaC, an unstable conserved recombinant Shigella protein. Three intranasal doses of stabilized Shigella dysenteriae IpaC resulted in 100% survival when challenged with heterologous Shigella flexneri.
The present study was a step toward extending the shelf life of stabilized IpaC and lowering the dose frequency to boost patient compliance. Here, a previously determined minimum protective dose, 20 micrograms of IpaC, was administered intranasally as a single dose nanovaccine, wherein a biodegradable PLGA polymer was used to formulate the nanovaccine.
Additionally, because PLGA shows adjuvant properties owing to the depot effect, it avoids the need for an additional adjuvant. Thus, utilizing PLGA nanoparticles to deliver Shigella proteins helps to develop a minimalist single-antigen nanovaccine against Shigella.
The developed PLGA 50:50 nanoparticles released up to 77% of the encapsulated protein in 28 days at 37 degrees Celsius and were degraded in 35 days under physiological conditions. Following the administration of the nanovaccine, the nanoparticles were lyophilized effectively and transported, which was desirable for translatable vaccines.
Furthermore, IgG and IgA titers increased with time, indicating sustained release of IpaC from the nanovaccine. Ultimately, the single-dose nanovaccine encapsulating 20 micrograms of stabilized IpaC showed potential as a non-invasive, single-antigen nanovaccine against Shigella.
Conclusion
Overall, the present work provided evidence that encapsulating a minimum protective dose of stabilized S. dysenteriae IpaC protein in PLGA 50:50 nanoparticles results in a non-invasive, single-dose, single-antigen, cross-protective Shigella nanovaccine with scope for mass scale-up and immunization.

News
Scientists Discover Natural Compound That Stops Cancer Progression
A discovery led by OHSU was made possible by years of study conducted by University of Portland undergraduates. Scientists have discovered a natural compound that can halt a key process involved in the progression [...]
Scientists Just Discovered an RNA That Repairs DNA Damage – And It’s a Game-Changer
Our DNA is constantly under threat — from cell division errors to external factors like sunlight and smoking. Fortunately, cells have intricate repair mechanisms to counteract this damage. Scientists have uncovered a surprising role played by [...]
What Scientists Just Discovered About COVID-19’s Hidden Death Toll
COVID-19 didn’t just claim lives directly—it reshaped mortality patterns worldwide. A major international study found that life expectancy plummeted across most of the 24 analyzed countries, with additional deaths from cardiovascular disease, substance abuse, and mental [...]
Self-Propelled Nanoparticles Improve Immunotherapy for Non-Invasive Bladder Cancer
A study led by Pohang University of Science and Technology (POSTECH) and the Institute for Bioengineering of Catalonia (IBEC) in South Korea details the creation of urea-powered nanomotors that enhance immunotherapy for bladder cancer. The nanomotors [...]
Scientists Develop New System That Produces Drinking Water From Thin Air
UT Austin researchers have developed a biodegradable, biomass-based hydrogel that efficiently extracts drinkable water from the air, offering a scalable, sustainable solution for water access in off-grid communities, emergency relief, and agriculture. Discarded food [...]
AI Unveils Hidden Nanoparticles – A Breakthrough in Early Disease Detection
Deep Nanometry (DNM) is an innovative technique combining high-speed optical detection with AI-driven noise reduction, allowing researchers to find rare nanoparticles like extracellular vesicles (EVs). Since EVs play a role in disease detection, DNM [...]
Inhalable nanoparticles could help treat chronic lung disease
Nanoparticles designed to release antibiotics deep inside the lungs reduced inflammation and improved lung function in mice with symptoms of chronic obstructive pulmonary disease By Grace Wade Delivering medication to the lungs with inhalable nanoparticles [...]
New MRI Study Uncovers Hidden Lung Abnormalities in Children With Long COVID
Long COVID is more than just lingering symptoms—it may have a hidden biological basis that standard medical tests fail to detect. A groundbreaking study using advanced MRI technology has uncovered significant lung abnormalities in [...]
AI Struggles with Abstract Thought: Study Reveals GPT-4’s Limits
While GPT-4 performs well in structured reasoning tasks, a new study shows that its ability to adapt to variations is weak—suggesting AI still lacks true abstract understanding and flexibility in decision-making. Artificial Intelligence (AI), [...]
Turning Off Nerve Signals: Scientists Develop Promising New Pancreatic Cancer Treatment
Pancreatic cancer reprograms nerve cells to fuel its growth, but blocking these connections can shrink tumors and boost treatment effectiveness. Pancreatic cancer is closely linked to the nervous system, according to researchers from the [...]
New human antibody shows promise for Ebola virus treatment
New research led by scientists at La Jolla Institute for Immunology (LJI) reveals the workings of a human antibody called mAb 3A6, which may prove to be an important component for Ebola virus therapeutics. [...]
Early Alzheimer’s Detection Test – Years Before Symptoms Appear
A new biomarker test can detect early-stage tau protein clumping up to a decade before it appears on brain scans, improving early Alzheimer’s diagnosis. Unlike amyloid-beta, tau neurofibrillary tangles are directly linked to cognitive decline. Years [...]
New mpox variant can spread rapidly across borders
International researchers, including from DTU National Food Institute, warn that the ongoing mpox outbreak in the Democratic Republic of the Congo (DRC) has the potential to spread across borders more rapidly. The mpox virus [...]
How far would you trust AI to make important decisions?
From tailored Netflix recommendations to personalized Facebook feeds, artificial intelligence (AI) adeptly serves content that matches our preferences and past behaviors. But while a restaurant tip or two is handy, how comfortable would you [...]
Can AI Really Think? Research Reveals Gaps in Logical Execution
While AI models can break down problems into structured steps, new research reveals they still fail at basic arithmetic and fact-checking—raising questions about their true reasoning abilities. Large Language Models (LLMs) have become indispensable [...]
Scientists Just Made Cancer Radiation Therapy Smarter, Safer, and More Precise
Scientists at UC San Francisco have developed a revolutionary cancer treatment that precisely targets tumors with radiation while sparing healthy tissues. By using a KRAS-targeting drug to mark cancer cells and attaching a radioactive [...]