A cancer vaccine combining checkpoint blockade therapy and a STING-activating drug eliminates tumors and prevents recurrence in mice.
MIT researchers have engineered a therapeutic cancer vaccine that targets the STING pathway, vital for immune response to cancer cells. This vaccine has shown significant potential in eliminating tumors, inhibiting metastasis, and preventing recurrence in mouse models of different cancers, with minimal side effects. The treatment is even effective in cases where the STING gene is mutated. The study also revealed an unexpected key role of CD4+ T cells in antitumor immunity.
Immune checkpoint blockade therapies have been revolutionary in the treatment of some cancer types, emerging as one of the most promising treatments for diseases such as melanoma, colon cancer, and non-small cell lung cancer.
In a study published recently in the journal Advanced Healthcare Materials, a team of MIT researchers engineered a therapeutic cancer vaccine capable of restoring STING signaling and eliminating the majority of tumors in mouse models of colon cancer and melanoma, with minimal side effects. The vaccine also inhibited metastasis in a breast cancer mouse model and prevented the recurrence of tumors in cured mice.
“We have repurposed a naturally existing adaptor protein into a novel, dual-functional cancer vaccine that initiates and sustains an effective antitumoral immunity. The protein complex stimulated robust immune attack and helped form long-term memory against tumors in mouse models of colon cancer and melanoma,” says Angela Belcher, the senior author of the study, a member of the Koch Institute for Integrative Cancer Research, and the head of MIT’s Department of Biological Engineering.
The study was led by MIT postdoc Yanpu He and conducted in collaboration with the laboratory of Paula Hammond, who is also a member of the Koch Institute, an MIT Institute Professor, and the head of MIT’s Department of Chemical Engineering. Other authors of the paper include Celestine Hong, Shengnan Huang, Justin Kaskow, Gil Covarrubias, Ivan Pires, and James Sacane.
Building blocks of a vaccine
Immune checkpoints are a key part of a system that helps the immune system tell the difference between the body’s own healthy cells and threats such as harmful bacteria or cancer cells. When checkpoint proteins on the surface of immune cells bind to partner proteins on other cells, the interaction gives rise to a signal that prevents T cells and other immune cells from mounting an attack. By presenting the same type of partner proteins, cancer cells can evade destruction by the immune system. Immune checkpoint blockade therapies — the discovery of which was recognized by the 2018 Nobel Prize in Physiology or Medicine — work by binding to partner proteins on cancer cells and allowing the immune system to respond.
The STING pathway holds promise as a partner for immune checkpoint blockade therapies because of its key role in raising immune response to pathogens and cancer cells. The pathway is also known to impact the immune system in other ways, including the maturation, specialization, and activation of certain types of immune cells.
“We have repurposed a naturally existing adaptor protein into a novel, dual-functional cancer vaccine that initiates and sustains an effective antitumoral immunity.” — Angela Belcher
Although there are multiple ongoing clinical trials that combine an immune checkpoint blockade with a STING-targeted therapy, few have obtained approval from the U.S. Food and Drug Administration, largely because they can cause serious toxic and inflammatory side effects when administered systemically. Side effects can be limited by injecting STING directly into the tumor, but this strategy still leaves one serious challenge unanswered: Nineteen percent of people carry mutated versions of the STING gene and do not respond to STING-targeted therapies.
In past work, the researchers worked to address this challenge by engineering a protein complex capable of restoring STING signaling in cell lines that lacked STING protein or had a mutated and ineffective version of the gene. The complex combined a piece of the STING protein responsible for triggering the downstream signaling with cGAMP, a small molecule that stimulates the STING pathway.
In the present study, the team added one more component to the STING-cGAMP complex: a smaller form of an antibody known as a nanobody carrying immune checkpoint blockade therapy.
After direct injection into tumors, the cancer vaccine eliminated 70-100 percent of tumors in mouse models of colon cancer and melanoma. The researchers found that most of the vaccine remained within the tumor and that treated mice lost minimal weight, suggesting that the risk of systemic side effects is low. Cured mice remained tumor-free after six months of observation, and when researchers rechallenged the mice with tumor cells to simulate cancer recurrence, 100 percent of those mice rejected them through immune memory. When mice whose STING genes were inactivated were treated, the vaccine still restored STING signaling and significantly reduced the size of tumors, although not as effectively as in mice with normal STING function.
“With further development, this platform not only promises to increase the effectiveness of checkpoint blockade therapies and prevent recurrence for cancer patients more broadly,” Belcher says, “but it may lead to a novel cancer treatment that could make checkpoint blockade therapy viable for large fraction of the human population with loss-of-function STING mutations.”
A surprising role for CD4+ T cells
When the researchers investigated the mechanisms of tumor response to the vaccine, they found — contrary to their expectations — that a subtype of T cells called CD4+ T cells played a pivotal role in achieving antitumor immunity.
In clinical cancer treatments, CD4+ T cells play various roles in the immune system and are usually associated with immunosuppression. Subsequently, most research on checkpoint blockade therapies and the STING pathway has centered on other types of immune cells whose roles in raising immune responses are better understood — for instance, natural killer cells and CD8+ T cells, both of which are responsible for attacking tumor cells. The importance of CD4+ cells has only been recently discovered for immune checkpoint blockade therapies, while their role in STING signaling has only been investigated in cell lines or in the context of preventive and not therapeutic vaccines.
Researchers found that the cancer vaccine changed how CD4+ T cells behaved in tumors. After depleting different populations of immune cells, the researchers tracked how the tumors responded after treatment. While depleting macrophage and natural killer cells only partially compromised the effectiveness of the vaccine, CD8+ T cells were predictably essential. However, CD4+ T cells were likewise indispensable. Without CD4+ T cells, tumors treated with the vaccine behaved as if they received no treatment at all.
CD4+ T cells can develop into several different subtypes with different functions. In tumors, CD4+ T cells frequently develop into the regulatory T (Treg) subtype that suppresses immune response. But with the cancer vaccine, researchers found that STING signaling polarized the CD4+ T cells into the T helper Type I (TH1) phenotype, a helper T cell that activates other immune cells to attack tumor cells.
“A key to leveraging CD4+ T cells in cancer therapies may be in understanding how they are polarized and activated,” says He. “Mechanistic insights from this study could inform future work on CD4+ T cells, allowing researchers to unlock the significant therapeutic potential of these cells for human cancer patients.”
Researchers believe that their approach could be developed into a modular platform, using different types of immune checkpoint blockade therapies. In future work, they plan to fine-tune their therapeutic strategy to improve potential outcomes for patients who carry STING mutations, for example by adjusting the dosage and timing of treatment and exploring the use of other nanobodies to engage immune cells.

News
Baffling Scientists for Centuries: New Study Unravels Mystery of Static Electricity
ISTA physicists demonstrate that contact electrification depends on the contact history of materials. For centuries, static electricity has intrigued and perplexed scientists. Now, researchers from the Waitukaitis group at the Institute of Science and [...]
Tumor “Stickiness” – Scientists Develop Potential New Way To Predict Cancer’s Spread
UC San Diego researchers have developed a device that predicts breast cancer aggressiveness by measuring tumor cell adhesion. Weakly adherent cells indicate a higher risk of metastasis, especially in early-stage DCIS. This innovation could [...]
Scientists Just Watched Atoms Move for the First Time Using AI
Scientists have developed a groundbreaking AI-driven technique that reveals the hidden movements of nanoparticles, essential in materials science, pharmaceuticals, and electronics. By integrating artificial intelligence with electron microscopy, researchers can now visualize atomic-level changes that were [...]
Scientists Sound Alarm: “Safe” Antibiotic Has Led to an Almost Untreatable Superbug
A recent study reveals that an antibiotic used for liver disease patients may increase their risk of contracting a dangerous superbug. An international team of researchers has discovered that rifaximin, a commonly prescribed antibiotic [...]
Scientists Discover Natural Compound That Stops Cancer Progression
A discovery led by OHSU was made possible by years of study conducted by University of Portland undergraduates. Scientists have discovered a natural compound that can halt a key process involved in the progression [...]
Scientists Just Discovered an RNA That Repairs DNA Damage – And It’s a Game-Changer
Our DNA is constantly under threat — from cell division errors to external factors like sunlight and smoking. Fortunately, cells have intricate repair mechanisms to counteract this damage. Scientists have uncovered a surprising role played by [...]
What Scientists Just Discovered About COVID-19’s Hidden Death Toll
COVID-19 didn’t just claim lives directly—it reshaped mortality patterns worldwide. A major international study found that life expectancy plummeted across most of the 24 analyzed countries, with additional deaths from cardiovascular disease, substance abuse, and mental [...]
Self-Propelled Nanoparticles Improve Immunotherapy for Non-Invasive Bladder Cancer
A study led by Pohang University of Science and Technology (POSTECH) and the Institute for Bioengineering of Catalonia (IBEC) in South Korea details the creation of urea-powered nanomotors that enhance immunotherapy for bladder cancer. The nanomotors [...]
Scientists Develop New System That Produces Drinking Water From Thin Air
UT Austin researchers have developed a biodegradable, biomass-based hydrogel that efficiently extracts drinkable water from the air, offering a scalable, sustainable solution for water access in off-grid communities, emergency relief, and agriculture. Discarded food [...]
AI Unveils Hidden Nanoparticles – A Breakthrough in Early Disease Detection
Deep Nanometry (DNM) is an innovative technique combining high-speed optical detection with AI-driven noise reduction, allowing researchers to find rare nanoparticles like extracellular vesicles (EVs). Since EVs play a role in disease detection, DNM [...]
Inhalable nanoparticles could help treat chronic lung disease
Nanoparticles designed to release antibiotics deep inside the lungs reduced inflammation and improved lung function in mice with symptoms of chronic obstructive pulmonary disease By Grace Wade Delivering medication to the lungs with inhalable nanoparticles [...]
New MRI Study Uncovers Hidden Lung Abnormalities in Children With Long COVID
Long COVID is more than just lingering symptoms—it may have a hidden biological basis that standard medical tests fail to detect. A groundbreaking study using advanced MRI technology has uncovered significant lung abnormalities in [...]
AI Struggles with Abstract Thought: Study Reveals GPT-4’s Limits
While GPT-4 performs well in structured reasoning tasks, a new study shows that its ability to adapt to variations is weak—suggesting AI still lacks true abstract understanding and flexibility in decision-making. Artificial Intelligence (AI), [...]
Turning Off Nerve Signals: Scientists Develop Promising New Pancreatic Cancer Treatment
Pancreatic cancer reprograms nerve cells to fuel its growth, but blocking these connections can shrink tumors and boost treatment effectiveness. Pancreatic cancer is closely linked to the nervous system, according to researchers from the [...]
New human antibody shows promise for Ebola virus treatment
New research led by scientists at La Jolla Institute for Immunology (LJI) reveals the workings of a human antibody called mAb 3A6, which may prove to be an important component for Ebola virus therapeutics. [...]
Early Alzheimer’s Detection Test – Years Before Symptoms Appear
A new biomarker test can detect early-stage tau protein clumping up to a decade before it appears on brain scans, improving early Alzheimer’s diagnosis. Unlike amyloid-beta, tau neurofibrillary tangles are directly linked to cognitive decline. Years [...]