Electronic and photonic devices have unique functionalities for converting chemical and biological processes into electrical or optical signals to detect, identify, and monitor these processes. Integrating nanotechnology concepts has led to various innovative optoelectronic designs that empower next-generation devices.
Deoxyribonucleic acid (DNA) is the molecule that stores and transmits genetic information in biological systems. These molecules are versatile substrates for chemical modification and functionalization, facilitating the attachment of nanocargoes at predetermined locations. DNA nanostructures have been used as templates for the fabrication of inorganic structures.
Although DNA molecules are promising building blocks for nanostructures, DNA-based optical or electronic devices have not yet been commercialized. A recent article published in Bioconjugate Chemistry discussed the potential applications of DNA nanotechnology in electronics and photonics through four case studies: quantum computing devices, carbon nanotube transistors, enzymatic fuel cells, and artificial electromagnetic materials.
DNA Nanotechnology and its Application in Nanofabrication
DNA nanotechnology has widened the applications of DNA molecules by applying them to assemble and connect structural motifs. These molecules have contributed extensively to the fields of nanoscience and nanotechnology and have revolutionized molecular self-assembly. DNA nanotechnology offers superior programmability to realize accurate self-assembly in three-dimensional (3D) structures and has evolved sufficiently to be commercialized.
In addition to its applications in engineering and physics, DNA nanotechnology has been exploited in biomedicine. DNA molecules tethered to nanocargoes or nanosurfaces have been frequently reported as highly functionalized nanoscale platforms.
In photonics and electronics, nanometer-scale platforms are fabricated using either top-down or bottom-up methods. Top-down approaches (such as electron beam lithography and photolithography) can produce sub-100 nanometers geometries with features of 20 nanometers. However, the inability to offer such characteristics on a centimeter scale at the same speed and affordability substantially restrict their applicability.
Alternatively, the application of DNA nanotechnology for nanofabrication enables the construction of 3D platforms via a combination of chemical reactions and nanoscale shapes, with scope for modulation. The present study sheds light on DNA nanotechnology involving processes through four case studies that have contributed immensely to photonic and electronic applications.
Quantum computing
A qubit is the simplest quantum system that enables information processing in quantum computers in radically different ways. Hence, qubit-based quantum computers are faster than classical computers and require a supporting component to stabilize and manipulate qubits. Although qubit-based quantum computers with silicon hardware have been hypothesized to be more advantageous than classical computers, their realization is challenging.
Few quantum information processing systems use Josephson junctions to create qubits. In this regard, DNA nanostructures can be used to assemble 3D arrays of Josephson junctions, which is otherwise unattainable using conventional methods, indicating the scope of DNA nanotechnology in fabricating quantum computing hardware.
Carbon nanotube (CNT) transistors
Structural DNA nanotechnology utilizes DNA molecules as programmable information-coding polymers to create high-order structures at the nanometer scale. For example, in DNA origami tiles, a long single-stranded viral genome (scaffold strand) is folded into arbitrary shapes using hundreds of short synthetic oligonucleotides (staple strands).
Previous studies have shown that templated metallization uses DNA origami tile as a substrate to fabricate interconnects in circuits. Additionally, DNA origami can be used as a template for conducting metal-semiconductor junctions, yielding complex metal nanostructures.
Furthermore, DNA origami tiles have also been used to arrange organic materials and polymers in curved patterns, which is beneficial for technologies such as wearable devices for health monitoring or bendable smartphones that require flexible electronic circuitry.
Enzymatic fuel cells or biobatteries
DNA nanotechnology has great potential for developing enzymatic fuel cells, wherein DNA-based hydrogels can be used as the medium.
DNA origami structures and hydrogels enable facile assembly under environmentally benign conditions compared with conventional devices that use dangerous materials. As scope for the future, researchers anticipate developing DNA hydrogel biobatteries with enhanced power density, energy, and longevity, by refining the electron transfer pathway and scrutinizing suitable enzymes/substrates.
Artificial electromagnetic material
DNA nanotechnology has several applications in the field of photonics. Nanocavities are used in quantum optical studies to confine light using subwavelength-scaled resonating modes. They require emitters to be placed at accurate positions. Gopinath et al. demonstrated that dye molecules targeted at different locations on a DNA structure within a photonic crystal cavity (PCC) enabled tunable emission based on the electric-field intensity of the PCC.
Another study by Kuzyk et al. used DNA nanorods as a substrate to link a gold nanosphere-based helical string to induce a chiroptical response. The left- and right-handed helices generated bisignate circular dichroism spectra.
Conclusion
Overall, a problem-driven approach, wherein the design of the device is guided by thorough knowledge of the demands of the target market and device specifications, would ease the translation of DNA nanotechnology research to the mark of commercialization. This approach could help to develop new innovative designs based on DNA nanotechnology that could be applied in photonics and electronics. Coupling it with efficient methods for scaling up at lower costs can be an additional advantage.
News
“Great Unified Microscope” Reveals Hidden Micro and Nano Worlds Inside Living Cells
University of Tokyo researchers have created a powerful new microscope that captures both forward- and back-scattered light at once, letting scientists see everything from large cell structures to tiny nanoscale particles in a single shot. Researchers [...]
Breakthrough Alzheimer’s Drug Has a Hidden Problem
Researchers in Japan found that although the Alzheimer’s drug lecanemab successfully removes amyloid plaques from the brain, it does not restore the brain’s waste-clearing system within the first few months of treatment. The study suggests that [...]
Concerning New Research Reveals Colon Cancer Is Skyrocketing in Adults Under 50
Colorectal cancer is striking younger adults at alarming rates, driven by lifestyle and genetic factors. Colorectal cancer (CRC) develops when abnormal cells grow uncontrollably in the colon or rectum, forming tumors that can eventually [...]
Scientists Discover a Natural, Non-Addictive Way To Block Pain That Could Replace Opioids
Scientists have discovered that the body can naturally dull pain through its own localized “benzodiazepine-like” peptides. A groundbreaking study led by a University of Leeds scientist has unveiled new insights into how the body manages pain, [...]
GLP-1 Drugs Like Ozempic Work, but New Research Reveals a Major Catch
Three new Cochrane reviews find evidence that GLP-1 drugs lead to clinically meaningful weight loss, though industry-funded studies raise concerns. Three new reviews from Cochrane have found that GLP-1 medications can lead to significant [...]
How a Palm-Sized Laser Could Change Medicine and Manufacturing
Researchers have developed an innovative and versatile system designed for a new generation of short-pulse lasers. Lasers that produce extremely short bursts of light are known for their remarkable precision, making them indispensable tools [...]
New nanoparticles stimulate the immune system to attack ovarian tumors
Cancer immunotherapy, which uses drugs that stimulate the body’s immune cells to attack tumors, is a promising approach to treating many types of cancer. However, it doesn’t work well for some tumors, including ovarian [...]
New Drug Kills Cancer 20,000x More Effectively With No Detectable Side Effects
By restructuring a common chemotherapy drug, scientists increased its potency by 20,000 times. In a significant step forward for cancer therapy, researchers at Northwestern University have redesigned the molecular structure of a well-known chemotherapy drug, greatly [...]
Lipid nanoparticles discovered that can deliver mRNA directly into heart muscle cells
Cardiovascular disease continues to be the leading cause of death worldwide. But advances in heart-failure therapeutics have stalled, largely due to the difficulty of delivering treatments at the cellular level. Now, a UC Berkeley-led [...]
The basic mechanisms of visual attention emerged over 500 million years ago, study suggests
The brain does not need its sophisticated cortex to interpret the visual world. A new study published in PLOS Biology demonstrates that a much older structure, the superior colliculus, contains the necessary circuitry to perform the [...]
AI Is Overheating. This New Technology Could Be the Fix
Engineers have developed a passive evaporative cooling membrane that dramatically improves heat removal for electronics and data centers Engineers at the University of California San Diego have created an innovative cooling system designed to greatly enhance [...]
New nanomedicine wipes out leukemia in animal study
In a promising advance for cancer treatment, Northwestern University scientists have re-engineered the molecular structure of a common chemotherapy drug, making it dramatically more soluble and effective and less toxic. In the new study, [...]
Mystery Solved: Scientists Find Cause for Unexplained, Deadly Diseases
A study reveals that a protein called RPA is essential for maintaining chromosome stability by stimulating telomerase. New findings from the University of Wisconsin-Madison suggest that problems with a key protein that helps preserve chromosome stability [...]
Nanotech Blocks Infection and Speed Up Chronic Wound Recovery
A new nanotech-based formulation using quercetin and omega-3 fatty acids shows promise in halting bacterial biofilms and boosting skin cell repair. Scientists have developed a nanotechnology-based treatment to fight bacterial biofilms in wound infections. The [...]
Researchers propose five key questions for effective adoption of AI in clinical practice
While Artificial Intelligence (AI) can be a powerful tool that physicians can use to help diagnose their patients and has great potential to improve accuracy, efficiency and patient safety, it has its drawbacks. It [...]
Advancements and clinical translation of intelligent nanodrugs for breast cancer treatment
A comprehensive review in "Biofunct. Mater." meticulously details the most recent advancements and clinical translation of intelligent nanodrugs for breast cancer treatment. This paper presents an exhaustive overview of subtype-specific nanostrategies, the clinical benefits [...]















