A groundbreaking study evaluates the feasibility, risks, and ethical considerations of creating mirror bacteria with reversed chirality, highlighting potential threats to health and ecosystems.
In a recent study published in Science, a team of researchers investigated and discussed the potential roadblocks to and risks of “mirror life,” where life forms are synthesized using biomolecules with reversed chirality compared to natural life.
The researchers assessed the feasibility, safety concerns, and governance strategies to address the unprecedented risks posed by these synthetic life forms.
Background
Natural life is characterized by specific molecular chirality, with ribonucleic acid (RNA), deoxyribonucleic acid (DNA), and proteins being composed of specific enantiomers.
Advances in synthetic biology now allow for the synthesis of mirror-image biomolecules, which are resistant to degradation and hold promise for therapeutic applications.
Furthermore, the creation of mirror organisms, such as mirror bacteria, represents a significant advancement in biological engineering that can combine these mirror-image biomolecules into viable life forms.
However, while synthetic mirror molecules offer some benefits, the construction of mirror organisms also raises significant concerns. Such entities could evade immune responses, resist natural predators, and potentially proliferate uncontrollably, presenting risks to health and ecosystems.
Although existing studies have explored the functionality of these mirror biomolecules, a comprehensive risk assessment for mirror organisms is lacking.
The growing technical feasibility of creating mirror life highlights the need for deeper understanding, ethical considerations, and regulatory measures to address potential dangers and to balance scientific progress with public safety.
About the study
The present study analyzed the feasibility and risks associated with creating mirror bacteria using mirror-image biomolecules. The team, consisting of experts in synthetic biology, immunology, ecology, and biosecurity, assessed the technical challenges and potential hazards of mirror life.
They focused on the likelihood of mirror bacteria surviving and spreading in natural and host environments, with specific attention to their interactions with immune systems and ecosystems.
The analysis highlighted key technical hurdles in constructing mirror bacteria, including synthesizing complex mirror molecules such as DNA, proteins, and ribosomes. Furthermore, the researchers identified and discussed the two potential methods for constructing mirror organisms.
The study also examined how mirror bacteria might evade immune defenses, given the importance of chirality to immune recognition. Additionally, the researchers emphasized the risk of ecological invasion and compared mirror bacteria to invasive species that thrive without natural predators.
Results
The study reported that mirror bacteria could evade immune responses and disrupt ecosystems, posing significant risks. These organisms were expected to resist common immune mechanisms, such as antigen presentation and antibody production, potentially allowing unchecked growth.
Mirror bacteria were also predicted to survive environmental challenges, avoiding predation and natural microbial competition due to their reversed chirality.
The researchers determined that reversed chirality makes mirror biomolecules resistant to immune recognition and predation, enabling their survival and proliferation in natural environments. Such bacteria could potentially cause severe infections in humans, animals, and plants due to impaired immune defenses.
Furthermore, the findings indicated that mirror bacteria could potentially also resist degradation from immune processes, such as antigen presentation and antibody generation.
Vertebrate immune systems, which rely on these mechanisms, would likely be ineffective against mirror pathogens. Invertebrates and plants may also experience compromised immune responses.
The experimental data indicated that mirror proteins could also be resistant to cleavage and may not effectively trigger adaptive immune mechanisms, supporting the predictions about the severe pathogenic potential of these organisms.
Beyond health risks, the authors predicted that mirror bacteria could also evade natural microbial competitors and predators, including bacteriophages and antibiotics, due to their unique chirality.
This could allow them to colonize various environments, much like invasive species with limited natural controls.
Even with proposed biocontainment measures, such as engineered dependencies on synthetic nutrients, the potential for escape and misuse remains significant. The researchers stated that physical containment measures, while helpful, are vulnerable to accidents and failures.
The capacity of the mirror bacteria to exploit achiral nutrients and engineered pathways for consuming common nutrients further increases their potential to thrive outside laboratory settings.
The analysis also highlighted the potential for ecological imbalance. The persistent presence of mirror bacteria in ecosystems could lead to global dissemination, evolution, and harm to biodiversity. Even stringent biocontainment measures might fail to prevent accidental or even deliberate release.
Conclusions
In summary, the study stated that while mirror biomolecules offer valuable scientific applications, the risks of creating mirror bacteria far outweigh the potential benefits.
The study stated that creating mirror bacteria poses extraordinary risks to health and ecosystems due to immune evasion and ecological disruption, and the findings called for stringent policies to prevent the development of mirror organisms.
Preventing the development of mirror organisms ensures public safety while allowing progress in beneficial areas of synthetic biology. Furthermore, the team emphasized that collaboration among scientists, policymakers, and stakeholders is essential to mitigate these risks responsibly.
- Adamala, Katarzyna P, Agashe, D., Belkaid, Y., Matias, D., Cai, Y., Chang, M. W., Chen, I. A., Church, G. M., Cooper, V. S., Davis, M. M., Devaraj, N. K., Endy, D., Esvelt, K. M., Glass, J. I., Hand, T. W., Inglesby, T. V., Isaacs, F. J., James, W. G., Jonathan, & Kay, M. S. (2024). Confronting risks of mirror life. Science, 0(0), eads9158. doi:10.1126/science.ads9158. https://www.science.org/doi/10.1126/science.ads9158
News
The risks of reversed chirality: Study highlights dangers of mirror organisms
A groundbreaking study evaluates the feasibility, risks, and ethical considerations of creating mirror bacteria with reversed chirality, highlighting potential threats to health and ecosystems. In a recent study published in Science, a team of researchers [...]
Alarming Mutation in H5N1 Virus Raises Pandemic Red Flags
NIH-funded study concludes that the risk of human infection remains low A recent study published in Science and funded by the National Institutes of Health (NIH) has found that a single alteration in a protein on the surface [...]
Scientists Discover Genetic Changes Linked to Autism, Schizophrenia
The Tbx1 gene influences brain volume and social behavior in autism and schizophrenia, with its deficiency linked to amygdala shrinkage and impaired social incentive evaluation. A study published in Molecular Psychiatry has linked changes in brain [...]
How much permafrost will melt this century, and where will its carbon go?
Among the many things global warming will be melting this century—sea ice, land glaciers and tourist businesses in seaside towns across the world—is permafrost. Lying underneath 15% of the northern hemisphere, permafrost consists of [...]
A Physics Discovery So Strange It’s Changing Quantum Theory
MIT physicists surprised to discover electrons in pentalayer graphene can exhibit fractional charge. New theoretical research from MIT physicists explains how it could work, suggesting that electron interactions in confined two-dimensional spaces lead to novel quantum states, [...]
Inside the Nano-Universe: New 3D X-Ray Imaging Transforms Material Science
A cutting-edge X-ray method reveals the 3D orientation of nanoscale material structures, offering fresh insights into their functionality. Researchers at the Swiss Light Source (SLS) have developed a groundbreaking technique called X-ray linear dichroic orientation tomography [...]
X-chromosome study reveals hidden genetic links to Alzheimer’s disease
Despite decades of research, the X-chromosome’s impact on Alzheimer’s was largely ignored until now. Explore how seven newly discovered genetic loci could revolutionize our understanding of the disease. Conventional investigations of the genetic contributors [...]
The Unresolved Puzzle of Long COVID: 30% of Young People Still Suffer After Two Years
A UCL study found that 70% of young people with long Covid recovered within 24 months, but recovery was less likely among older teenagers, females, and those from deprived backgrounds. Researchers emphasized the need [...]
Needle-Free: New Nano-Vaccine Effective Against All COVID-19 Variants
A new nano-vaccine developed by TAU and the University of Lisbon offers a needle-free, room-temperature-storable solution against COVID-19, targeting all key variants effectively. Professor Ronit Satchi-Fainaro’s lab at Tel Aviv University’s Faculty of Medical and [...]
Photoacoustic PDA-ICG Nanoprobe for Detecting Senescent Cells in Cancer
A study in Scientific Reports evaluated a photoacoustic polydopamine-indocyanine green (PDA-ICG) nanoprobe for detecting senescent cells. Senescent cells play a role in tumor progression and therapeutic resistance, with potential adverse effects such as inflammation and tissue [...]
How Dysregulated Cell Signaling Causes Disease
Cell signaling is crucial for cells to communicate and function correctly. Disruptions in these pathways, caused by genetic mutations or environmental factors, can lead to uncontrolled cell growth, improper immune responses, or errors in [...]
Scientists Develop Super-Strong, Eco-Friendly Plastic That Bacteria Can Eat
Researchers at the Weizmann Institute have developed a biodegradable composite material that could play a significant role in addressing the global plastic waste crisis. Billions of tons of plastic waste clutter our planet. Most [...]
Building a “Google Maps” for Biology: Human Cell Atlas Revolutionizes Medicine
New research from the Human Cell Atlas offers insights into cell development, disease mechanisms, and genetic influences, enhancing our understanding of human biology and health. The Human Cell Atlas (HCA) consortium has made significant [...]
Bioeconomic Potential: Scientists Just Found 140 Reasons to Love Spider Venom
Researchers at the LOEWE Centre for Translational Biodiversity Genomics (TBG) have discovered a significant diversity of enzymes in spider venom, previously overshadowed by the focus on neurotoxins. These enzymes, found across 140 different families, [...]
Quantum Algorithms and the Future of Precision Medicine
Precision medicine is reshaping healthcare by tailoring treatments to individual patients based on their unique genetic, environmental, and lifestyle factors. At the forefront of this revolution, the integration of quantum computing and machine learning [...]
Scientists Have Discovered a Simple Supplement That Causes Prostate Cancer Cells To Self-Destruct
Menadione, a vitamin K precursor, shows promise in slowing prostate cancer in mice by disrupting cancer cell survival processes, with potential applications for human treatment and myotubular myopathy therapy. Prostate cancer is a quiet [...]